cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006584 If n mod 2 = 0 then n*(n^2-4)/12 else n*(n^2-1)/12.

Original entry on oeis.org

0, 0, 0, 2, 4, 10, 16, 28, 40, 60, 80, 110, 140, 182, 224, 280, 336, 408, 480, 570, 660, 770, 880, 1012, 1144, 1300, 1456, 1638, 1820, 2030, 2240, 2480, 2720, 2992, 3264, 3570, 3876, 4218, 4560, 4940, 5320
Offset: 0

Views

Author

Keywords

Comments

Graded dimension of L''/[L',L''] for the free Lie algebra on 2 generators. Let L be a free Lie algebra with 2 generators graded by the total degree. Set L'=[L,L] and L''=[L',L']. Then a(n) is equal to the dimension of the homogeneous subspace of degree n+2 in the quotient L''/[L',L'']. - Sergei Duzhin, Mar 15 2004
Also the 2nd Witt transform of A000027. - R. J. Mathar, Nov 08 2008
Also the number of 3-element subsets of {1..n+1} whose elements sum up to an odd integer, i.e., the third column of A159916: e.g. a(3)=2 corresponds to the two subsets {1,2,4} and {2,3,4} of {1..4}. - M. F. Hasler, May 01 2009
The set of magic numbers for an idealized harmonic oscillator nucleus with a biaxially deformed prolate ellipsoid shape and an oscillator ratio of 2:1. - Jess Tauber, May 13 2013
Quasipolynomial of order 2. - Charles R Greathouse IV, May 14 2013

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Partial sums of A110660.

Programs

Formula

a(n+3) = A003451(n) + A027656(n). - Yosu Yurramendi, Aug 07 2008
G.f.: 2*x^3/((1-x)^4*(1+x)^2). a(n) = 2*A006918(n-2). - R. J. Mathar, Nov 08 2008
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = n*(2*n^2-5-3*(-1)^n)/24. - Luce ETIENNE, Apr 03 2015
a(n) = Sum_{i=1..n} floor(i*(n-i)/2). - Wesley Ivan Hurt, May 07 2016
E.g.f.: x*(x*(x + 3)*exp(x) - 3*sinh(x))/12. - Ilya Gutkovskiy, May 08 2016
Sum_{n>=3} 1/a(n) = 75/8 - 12*log(2). - Amiram Eldar, Sep 17 2022