cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006592 a(n) = 10*n^3 - 6*n^2.

Original entry on oeis.org

0, 4, 56, 216, 544, 1100, 1944, 3136, 4736, 6804, 9400, 12584, 16416, 20956, 26264, 32400, 39424, 47396, 56376, 66424, 77600, 89964, 103576, 118496, 134784, 152500, 171704, 192456, 214816, 238844, 264600, 292144, 321536, 352836, 386104, 421400, 458784, 498316, 540056
Offset: 0

Views

Author

Keywords

References

  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.

Programs

  • Magma
    [10*n^3-6*n^2: n in [0..40]]; // Vincenzo Librandi, Jul 20 2011
    
  • Mathematica
    Table[10n^3-6n^2,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,4,56,216},50] (* Harvey P. Dale, Aug 13 2012 *)
  • PARI
    a(n)=10*n^3-6*n^2;

Formula

a(n) = 4 * A006597(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=4, a(2)=56, a(3)=216. - Harvey P. Dale, Aug 13 2012
From G. C. Greubel, Oct 18 2018: (Start)
G.f.: 4*(x + 10*x^2 + 4*x^3)/(1 - x)^4.
E.g.f.: 2*x*(2 + 12*x + 5*x^2)*exp(x). (End)

Extensions

Name corrected by Arkadiusz Wesolowski, Jul 20 2011