cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006595 a(n) = (n+2)!/4 + n!/2.

Original entry on oeis.org

1, 2, 7, 33, 192, 1320, 10440, 93240, 927360, 10160640, 121564800, 1576713600, 22034073600, 330032102400, 5274286617600, 89575694208000, 1611054821376000, 30589118816256000, 611426688897024000, 12833558093131776000, 282216632948490240000
Offset: 0

Views

Author

Keywords

Comments

A non-plane recursive tree is a rooted labeled plane tree (the children of a node are not ordered) with the property that the labels increase along any path from the root to a leaf. a(n) is the total number of vertices of outdegree 1 among the set of n! non-plane recursive trees on n+1 vertices. An example is given below. - Peter Bala, Jul 08 2012

Examples

			a(3) = 7. There are 3! = 6 non-plane recursive trees on 4 nodes shown below. The total number of nodes of outdegree 1 is 3+1+1+1+1+0 = 7.
  .0o......0o..........0o..........0o.........0o...........0o......
  ..|.......|........../.\........./.\......../.\........../|\.....
  ..|.......|........./...\......./...\....../...\......../.|.\....
  .1o......1o.......1o.....o3...1o....o2...2o.....o1...../..|..\...
  ..|....../.\.......|...........|..........|..........1o..2o...o3.
  ..|...../...\......|...........|..........|......................
  .2o...2o.....o3...2o..........3o.........3o......................
  ..|..............................................................
  ..|..............................................................
  .3o..............................................................
  .................................................................
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 258.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059418.

Programs

Formula

E.g.f.: 1/2*(x^2-2*x+2)/(1-x)^3. - Peter Bala, Jul 08 2012
a(n) - (n+2)*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3) = 0. - R. J. Mathar, May 30 2014

Extensions

Improved description and sequence extended by N. J. A. Sloane, Aug 15 1995