cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006603 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 2, 7, 26, 107, 468, 2141, 10124, 49101, 242934, 1221427, 6222838, 32056215, 166690696, 873798681, 4612654808, 24499322137, 130830894666, 702037771647, 3783431872018, 20469182526595, 111133368084892, 605312629105205, 3306633429423460, 18111655081108453
Offset: 0

Views

Author

Keywords

Comments

The Kn21 sums, see A180662, of the Schroeder triangle A033877 equal A006603(n) while the Kn3 sums equal A006603(2*n). The Kn22 sums, see A227504, and the Kn23 sums, see A227505, are also related to the sequence given above. - Johannes W. Meijer, Jul 15 2013
Typo on the right-hand side of Rogers's equation (1-x+x^2+x^3)*R^*(x) = R(x) + x: the sign in front of the x should be switched. - R. J. Mathar, Nov 23 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!( (1-x-2*x^2 -Sqrt(1-6*x+x^2))/(2*x*(1-x+x^2+x^3)) )); // G. C. Greubel, Oct 27 2024
    
  • Maple
    A006603 := n-> add((k*add(binomial(n-k+2, i)*binomial(2*n-3*k-i+3, n-k+1), i= 0.. n-2*k+2))/(n-k+2), k= 1.. n/2+1): seq(A006603(n), n=0..24); # Johannes W. Meijer, Jul 15 2013
  • Mathematica
    CoefficientList[Series[(1-x-2x^2-Sqrt[1-6x+x^2])/(2x(1-x+x^2+x^3)),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)
  • Maxima
    a(n):=sum((k*sum(binomial(n-k+2,i)*binomial(2*n-3*k-i+3,n-k+1),i,0,n-2*k+2))/(n-k+2),k,1,n/2+1); /* Vladimir Kruchinin, Oct 23 2011 */
    
  • SageMath
    def A006603_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-2*x^2 -sqrt(1-6*x+x^2))/(2*x*(1-x+x^2+x^3)) ).list()
    A006603_list(50) # G. C. Greubel, Oct 27 2024

Formula

a(n) = abs(A080244(n-1)).
G.f.: (1 - x - 2*x^2 - sqrt(1 - 6*x + x^2))/(2*x*(1 - x + x^2 + x^3)).
G.f.: (A006318(x) - x)/(1 - x + x^2 + x^3).
a(n) = Sum_{k=1..floor(n/2)+1} k*(1/(n-k+2))*Sum_{i=0..n-2*k+2} C(n-k+2,i)*C(2*n-3*k-i+3,n-k+1). - Vladimir Kruchinin, Oct 23 2011
(n+1)*a(n) -(7*n-2)*a(n-1) +4*(2*n-1)*a(n-2) -6*(n-1)*a(n-3) -(5*n-1)*a(n-4) +(n-2)*a(n-5) = 0. - R. J. Mathar, Nov 23 2018

Extensions

More terms from Emeric Deutsch, Feb 28 2004