cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006604 Generalized Fibonacci numbers.

Original entry on oeis.org

1, 1, 4, 13, 53, 228, 1037, 4885, 23640, 116793, 586633, 2986616, 15377097, 79927913, 418852716, 2210503285, 11738292397, 62673984492, 336260313765, 1811960161517, 9802082905840, 53213718977777, 289817858570513, 1583076422786096, 8670574105626961
Offset: 0

Views

Author

Keywords

References

  • D. G. Rogers, A Schroeder triangle: three combinatorial problems, in "Combinatorial Mathematics V (Melbourne 1976)", Lect. Notes Math. 622 (1976), pp. 175-196.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!( (1+x-2*x^2-Sqrt(1-6*x+x^2))/(2*(2*x-x^2-x^3+x^4)) )); // G. C. Greubel, Aug 29 2025
    
  • Mathematica
    CoefficientList[Series[(1+x-2 x^2-Sqrt[1-6 x+x^2])/(2 (2 x-x^2-x^3+x^4)),{x,0,60}], x]  (* Harvey P. Dale, Mar 23 2011 *)
  • Maxima
    a(n):=sum((k*sum((-1)^j*2^(n-2*k-j+2)*binomial(n-k+2,j)*binomial(2*n-3*k-j+3,n-k+1),j,0,n-2*k+2))/((n-k+2)),k,1,n/2+1); /* Vladimir Kruchinin, Oct 22 2011 */
    
  • SageMath
    def A006604_list(prec):
        P.= PowerSeriesRing(QQ, prec)
        return P( (1+x-2*x^2-sqrt(1-6*x+x^2))/(2*(2*x-x^2-x^3+x^4)) ).list()
    print(A006604_list(41)) # G. C. Greubel, Aug 29 2025

Formula

G.f.: (1+x-2*x^2-sqrt(1-6*x+x^2))/(2*(2*x-x^2-x^3+x^4)).
n*a(n) = (-1/2*n+3/2)*a(n-5)+(7/2*n-6)*a(n-4) +(13/2*n-9)*a(n-1) +(-7/2*n+15/2) *a(n-2) +(-3*n+3)*a(n-3). - Simon Plouffe, Master's Thesis, UQAM, 1992
a(n) = Sum_{k=1..n/2+1} (k/(n-k+2))*Sum_{j=0..n-2*k+2} (-1)^j*2^(n-2*k-j+2)*C(n-k+2,j) * C(2*n-3*k-j+3,n-k+1). - Vladimir Kruchinin, Oct 22 2011
G.f.: (1 - x + f(x))/(2 - x - x^2 + x^3), where f(x) is the gf of A006318. - G. C. Greubel, Aug 29 2025

Extensions

More terms from Harvey P. Dale, Mar 23 2011