cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006631 From generalized Catalan numbers.

Original entry on oeis.org

1, 8, 52, 320, 1938, 11704, 70840, 430560, 2629575, 16138848, 99522896, 616480384, 3834669566, 23944995480, 150055305008, 943448717120, 5949850262895, 37628321318280, 238591135349700, 1516500543586560, 9660632784642840, 61670325204822048, 394451619337629792
Offset: 0

Views

Author

Keywords

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A092276.
Cf. A006630.

Programs

  • Magma
    A006631:= func< n | 4*Binomial(3*n+7,n)/(n+4) >;
    [A006631(n): n in [0..40]]; // G. C. Greubel, Aug 31 2025
    
  • Mathematica
    Table[SeriesCoefficient[HypergeometricPFQ[{3,8/3,10/3},{5,9/2},27*x/4],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
    Table[4*Binomial[3*n+7,n]/(n+4), {n,0,40}] (* G. C. Greubel, Aug 31 2025 *)
  • PARI
    a(n) = 8*binomial(3*n + 8, n)/(3*n + 8);
    
  • SageMath
    def A006631(n): return 4*binomial(3*n+7,n)//(n+4)
    print([A006631(n) for n in range(41)]) # G. C. Greubel, Aug 31 2025

Formula

G.f.: hypergeometric3_F_2([ 3, 8/3, 10/3 ], [ 5, 9/2 ], 27*x/4).
Recurrence: 2*(n+4)*(2*n+7)*a(n) = (5*n+13)*(11*n+29)*a(n-1) - 7*(31*n^2+87*n+62)*a(n-2) + 21*(3*n-1)*(3*n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 3^(3*n+15/2)/(2^(2n+6)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 8*binomial(3*n + 8, n)/(3*n + 8). - Andrew Howroyd, Nov 06 2017

Extensions

More terms from Vincenzo Librandi, May 03 2013