cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006637 Expansion of (2 - x)^4/(1 - x)^8.

Original entry on oeis.org

16, 96, 344, 952, 2241, 4712, 9108, 16488, 28314, 46552, 73788, 113360, 169507, 247536, 354008, 496944, 686052, 932976, 1251568, 1658184, 2172005, 2815384, 3614220, 4598360, 5802030, 7264296, 9029556, 11148064, 13676487, 16678496, 20225392, 24396768, 29281208
Offset: 0

Views

Author

Keywords

Comments

Former name: From generalized Catalan numbers. - G. C. Greubel, Sep 03 2025

References

  • H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A006637:= func< n | (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/5040 >;
    [A006637(n): n in [0..40]]; // G. C. Greubel, Sep 03 2025
    
  • Mathematica
    Table[(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)/7!, {n,0,40}] (* G. C. Greubel, Sep 03 2025 *)
  • SageMath
    def A006637(n): return (n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2+31*n+192)//5040
    print([A006637(n) for n in range(41)]) # G. C. Greubel, Sep 03 2025

Formula

G.f.: (2-x)^4/(1-x)^8. - Sean A. Irvine, May 31 2017
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 18 2022
From G. C. Greubel, Sep 03 2025: (Start)
a(n) = Sum_{k=0..4} binomial(4, k)*binomial(n+k+3, k+3).
a(n) = (1/7!)*(n+1)*(n+2)*(n+3)*(n+5)*(n+14)*(n^2 + 31*n + 192).
E.g.f.: (1/7!)*(80640 + 403200*x + 423360*x^2 + 161280*x^3 + 27090*x^4 + 2142*x^5 + 77*x^6 + x^7)*exp(x). (End)

Extensions

a(6) and a(8) corrected and more terms from Sean A. Irvine, May 31 2017
New name by G. C. Greubel, Sep 03 2025