cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168344 G.f. A(x) satisfies: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) = g.f. of A006664, which is the number of irreducible systems of meanders.

Original entry on oeis.org

1, 1, 3, 15, 99, 773, 6743, 63591, 635307, 6634599, 71759983, 798563065, 9098321475, 105733563393, 1249676348391, 14986826364311, 182027688352427, 2235713532561779, 27732857308708571, 347064951865766607
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Comments

Number of b^* n-strand braids of length at most 2, see the Biane/Dehornoy reference. - Joerg Arndt, Jul 08 2014

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 99*x^4 + 773*x^5 + 6743*x^6 +...
A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
A(x) satisfies: A(x/G(x)) = G(x) = g.f. of A006664:
G(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...
		

Crossrefs

Cf. A168450 (variant). [From Paul D. Hanna, Nov 29 2009]

Programs

  • Mathematica
    F[x_] = (Hypergeometric2F1[-1/2, -1/2, 1, 16x] - 1)/(4x);
    A[x_] = x/InverseSeries[x F[x] + O[x]^21, x];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jul 21 2018, from 2nd formula *)
  • PARI
    {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)^2));polcoeff(x/serreverse(x*Ser(C_2)),n)}

Formula

G.f.: A(x) = F(x/A(x)) where A(x*F(x)) = F(x) = g.f. of A001246, which is the squares of Catalan numbers.
G.f.: A(x) = x/Series_Reversion(x*F(x)) where F(x) = g.f. of A001246.
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) = g.f. of A006664.

Extensions

Typo in formula corrected by Paul D. Hanna, Nov 24 2009

A168357 Self-convolution of A006664, which is the number of irreducible systems of meanders.

Original entry on oeis.org

1, 2, 5, 20, 112, 768, 5984, 50856, 460180, 4366076, 42988488, 436066232, 4532973676, 48095557700, 519247705968, 5690272928520, 63172884082028, 709373555125356, 8046263496489260, 92089662771965492, 1062482514810065752
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 +...
A(x)^(1/2) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G.f. satisfies: A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246:
F(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A000108(n)^2*x^n +...
F(x)^2 = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 + 40569*x^6 +...+ A168358(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(x/serreverse(x*Ser(C_2)^2), n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)^2) where F(x) = g.f. of A001246, which is the squares of Catalan numbers.
G.f.: A(x) = F(x/A(x))^2 where A(x*F(x)^2) = F(x)^2 where F(x) = g.f. of A001246.

A168358 Self-convolution square of A001246, which is the squares of Catalan numbers.

Original entry on oeis.org

1, 2, 9, 58, 458, 4120, 40569, 426842, 4723890, 54402904, 646992474, 7900772120, 98642862232, 1254984808672, 16227116787737, 212790354730842, 2824992774357362, 37915366854924952, 513837166842215970
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 58*x^3 + 458*x^4 + 4120*x^5 +...
A(x)^(1/2) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 +...+ A001246(n)*x^n +...
A(x) satisfies: A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A006664:
G(x) = 1 + x + 2*x^2 + 8*x^3 + 46*x^4 + 322*x^5 + 2546*x^6 +...+ A006664(n)*x^n +...
G(x)^2 = 1 + 2*x + 5*x^2 + 20*x^3 + 112*x^4 + 768*x^5 + 5984*x^6 +...+ A168357(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[CatalanNumber[k]^2 * CatalanNumber[n-k]^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 10 2018 *)
  • PARI
    {a(n)=local(C_2=vector(n+1, m, (binomial(2*m-2, m-1)/m)^2)); polcoeff(Ser(C_2)^2, n)}

Formula

G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)^2) where G(x) = g.f. of A006664, which is the number of irreducible systems of meanders.
G.f.: A(x) = G(x*A(x))^2 where A(x/G(x)^2) = G(x)^2 where G(x) = g.f. of A006664.
From Vaclav Kotesovec, Mar 10 2018: (Start)
Recurrence: (n+1)^2*(n+2)^3*(4*n^2 - 5*n - 3)*a(n) = 4*(n+1)^2*(48*n^5 - 12*n^4 - 136*n^3 + 15*n^2 + 49*n - 30)*a(n-1) - 32*(96*n^7 - 312*n^6 + 104*n^5 + 580*n^4 - 630*n^3 + 80*n^2 + 91*n - 12)*a(n-2) + 1024*(n-2)^3*(2*n - 3)^2*(4*n^2 + 3*n - 4)*a(n-3).
a(n) ~ (4/Pi - 1) * 2^(4*n + 3) / (Pi*n^3). (End)
Showing 1-3 of 3 results.