cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006684 Convolve Fibonacci and Pell numbers.

Original entry on oeis.org

0, 0, 1, 3, 9, 24, 62, 156, 387, 951, 2323, 5652, 13716, 33228, 80405, 194415, 469845, 1135092, 2741626, 6620928, 15987663, 38603019, 93204647, 225030024, 543293352, 1311663096, 3166694569, 7645173627, 18457238241, 44559967920, 107577688310, 259716176580
Offset: 0

Views

Author

Keywords

Comments

Define a triangle T(r,c) by T(n,0) = T(n,n) = A000045(n) and T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). The sum of the terms in the first n rows is 2*a(n+1). - J. M. Bergot, Apr 07 2013

Crossrefs

Cf. A000045, A000129, A106515 (first differences).

Programs

  • Magma
    Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >;
    [Pell(n) - Fibonacci(n): n in [0..30]]; // G. C. Greubel, Aug 05 2021
    
  • Maple
    with(combinat):seq(fibonacci(i,2)-fibonacci(i, 1),i=0..27); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    LinearRecurrence[{3,0,-3,-1}, {0,0,1,3}, 50] (* T. D. Noe, Apr 16 2013 *)
    Table[Fibonacci[n, 2] - Fibonacci[n], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
  • Sage
    [lucas_number1(n, 2, -1) - lucas_number1(n, 1, -1) for n in (0..30)] # G. C. Greubel, Aug 05 2021

Formula

a(n) = Pell(n) - Fibonacci(n).
G.f.: x^2/( (1-x-x^2)*(1-2*x-x^2) ). - Joerg Arndt, Apr 17 2013
a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4) with a(0) = a(1) = 0, a(2) = 1, a(3) = 3. - Taras Goy, Mar 12 2019