A006684 Convolve Fibonacci and Pell numbers.
0, 0, 1, 3, 9, 24, 62, 156, 387, 951, 2323, 5652, 13716, 33228, 80405, 194415, 469845, 1135092, 2741626, 6620928, 15987663, 38603019, 93204647, 225030024, 543293352, 1311663096, 3166694569, 7645173627, 18457238241, 44559967920, 107577688310, 259716176580
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- A. Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015:148 (2015).
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,-1).
Programs
-
Magma
Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >; [Pell(n) - Fibonacci(n): n in [0..30]]; // G. C. Greubel, Aug 05 2021
-
Maple
with(combinat):seq(fibonacci(i,2)-fibonacci(i, 1),i=0..27); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
LinearRecurrence[{3,0,-3,-1}, {0,0,1,3}, 50] (* T. D. Noe, Apr 16 2013 *) Table[Fibonacci[n, 2] - Fibonacci[n], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
-
Sage
[lucas_number1(n, 2, -1) - lucas_number1(n, 1, -1) for n in (0..30)] # G. C. Greubel, Aug 05 2021
Formula
a(n) = Pell(n) - Fibonacci(n).
G.f.: x^2/( (1-x-x^2)*(1-2*x-x^2) ). - Joerg Arndt, Apr 17 2013
a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4) with a(0) = a(1) = 0, a(2) = 1, a(3) = 3. - Taras Goy, Mar 12 2019
Comments