cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A133423 Analog of A006684 for the 5x+1 problem (cf. A133419).

Original entry on oeis.org

1, 5, 17, 23, 41, 53, 65, 71, 77, 95, 221, 317, 365, 383, 3317, 3575, 3605, 6473, 24125, 31901, 39965, 44183, 163733, 317885, 490541, 519113, 558365, 602591, 707735, 753023, 1019615, 1463897, 1597973, 1752575, 4595735, 6197855
Offset: 1

Views

Author

N. J. A. Sloane, Nov 27 2007

Keywords

Comments

The 5x+1 map sends x to x/2 if x is even, x/3 if x is divisible by 3, otherwise 5x+1.

Crossrefs

A133425 Analog of A006684 for the 7x+1 problem (cf. A133421).

Original entry on oeis.org

1, 7, 11, 19, 31, 43, 163, 283, 403, 1111, 1123, 1243, 1303, 1549, 1963, 4123, 9643, 10003, 11539, 21431, 76963, 97031, 468109, 1351963, 4553323, 4778471, 5163139, 6563551, 7618843, 45214123, 65704243, 161738803, 202903723
Offset: 1

Views

Author

N. J. A. Sloane, Nov 27 2007

Keywords

Comments

The 7x+1 map sends x to x/2 if x is even, x/3 if x is divisible by 3, x/5 if x is divisible by 5, otherwise 7x+1.

Crossrefs

A117936 Triangle, rows = inverse binomial transforms of A073133 columns.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Left border of the triangle = Fibonacci numbers, right border = factorials. Companion triangle A117937 is generated from Lucas polynomials, using analogous operations.
Note that binomial transforms are defined from offset 1 here. - R. J. Mathar, Aug 16 2019

Examples

			First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...).
Inverse binomial transforms of the foregoing columns generates the triangle rows:
  1;
  1,  1;
  2,  3,   2;
  3,  9,  12,   6;
  5, 24,  56,  60,  24;
  8, 62, 228, 414, 360, 120;
  ...
		

Crossrefs

Cf. A006684 (column 2), A309717 (column 3 halved).

Programs

  • Maple
    A117936 := proc(n,k)
        add( A073133(i+1,n)*binomial(k-1,i)*(-1)^(i-k-1),i=0..k-1) ;
    end proc:
    seq(seq(A117936(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    (* A = A073133 *) A[, 1] = 1; A[n, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]];
    T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
  • Sage
    @CachedFunction
    def A073133(n,k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n,k-1) + A073133(n,k-2)
    def A117936(n,k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1,n) for j in (0..k-1) )
    flatten([[A117936(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021

Formula

Inverse binomial transforms of A073133 columns. Such columns are f(x), Fibonacci polynomials.

A091913 Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k= n, where k=0..max(n-1,0).

Original entry on oeis.org

0, 1, 3, 2, 7, 9, 3, 15, 28, 18, 4, 31, 75, 70, 30, 5, 63, 186, 225, 140, 45, 6, 127, 441, 651, 525, 245, 63, 7, 255, 1016, 1764, 1736, 1050, 392, 84, 8, 511, 2295, 4572, 5292, 3906, 1890, 588, 108, 9, 1023, 5110, 11475, 15240, 13230, 7812, 3150, 840, 135, 10, 2047
Offset: 0

Views

Author

Ross La Haye, Mar 10 2004

Keywords

Comments

Row lengths are 1,1,2,3,4,... = A028310. - M. F. Hasler, Jul 21 2012
Rows: Sum of the n-th row = A001047(n); Sum of the n-th row excluding column 0 = A028243(n+1). Columns: a(n,0) = A000225(n); a(n,1) = A058877(n). Diagonals: a(n,n-2) = A045943(n-1). Also note that the sums of the antidiagonals = A006684.
As an infinite lower triangular matrix * the Bernoulli numbers as a vector (Cf. A027641) = the natural numbers: [1, 2, 3, ...]. The same matrix * the Bernoulli number version starting [1, 1/2, 1/6, ...] = A001787: (1, 4, 12, 32, ...). - Gary W. Adamson, Mar 13 2012

Examples

			Triangle begins
   0;
   1;
   3,   2;
   7,   9,   3;
  15,  28,  18,   4;
  31,  75,  70,  30,   5;
  63, 186, 225, 140,  45,   6;
  ...
a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30.
		

Crossrefs

Formula

For k>=n, a(n, k) = 0; for k < n, a(n, k) = C(n, k) * (2^(n-k) - 1) = Sum [C(n,k) * C(n-k, m), {m=1 to n-k}]. [Formula corrected Aug 22 2006]
The triangle (1; 3,2; 7,9,3; ...) = A007318^2 - A007318, then delete the right border of zeros. - Gary W. Adamson, Nov 16 2007
O.g.f.: 1/( (1 - (1 + x)*t)*(1 - (2 + x)*t) ) = 1 + (3 + 2*x)*t + (7 + 9*x + 3*x^2)*t^2 + .... - Peter Bala, Jul 16 2013

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A309717 Convolve Fibonacci, Pell and bronze Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 1, 6, 28, 114, 432, 1566, 5517, 19068, 65044, 219852, 738316, 2468028, 8222805, 27330858, 90685224, 300521622, 994991716, 3292117698, 10887332473, 35992718136, 118958691528, 393093822744, 1298783453112, 4290755845176, 14174217683209, 46821054068430, 154655837126740
Offset: 0

Views

Author

R. J. Mathar, Aug 16 2019

Keywords

Crossrefs

Cf. A006684, A006190 (bronze Fibonacci numbers), A117936.

Programs

  • Maple
    -x^3/( (x^2+2*x-1)*(x^2+3*x-1)*(x^2+x-1) ) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: -x^3/( (x^2+2*x-1) * (x^2+3*x-1) * (x^2+x-1) ) = A006190(x) * A000045(x) * A000129(x).
Conjecture: 2*a(n) = A117936(n,3).
2*a(n) = A006190(n) + A000045(n) - 2*A000129(n). - R. J. Mathar, Mar 10 2023, typo corrected by Xiaoyuan Wang and Greg Dresden, May 08 2024
Showing 1-5 of 5 results.