Original entry on oeis.org
1, 5, 17, 23, 41, 53, 65, 71, 77, 95, 221, 317, 365, 383, 3317, 3575, 3605, 6473, 24125, 31901, 39965, 44183, 163733, 317885, 490541, 519113, 558365, 602591, 707735, 753023, 1019615, 1463897, 1597973, 1752575, 4595735, 6197855
Offset: 1
Original entry on oeis.org
1, 7, 11, 19, 31, 43, 163, 283, 403, 1111, 1123, 1243, 1303, 1549, 1963, 4123, 9643, 10003, 11539, 21431, 76963, 97031, 468109, 1351963, 4553323, 4778471, 5163139, 6563551, 7618843, 45214123, 65704243, 161738803, 202903723
Offset: 1
A117936
Triangle, rows = inverse binomial transforms of A073133 columns.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
Offset: 1
First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...).
Inverse binomial transforms of the foregoing columns generates the triangle rows:
1;
1, 1;
2, 3, 2;
3, 9, 12, 6;
5, 24, 56, 60, 24;
8, 62, 228, 414, 360, 120;
...
-
A117936 := proc(n,k)
add( A073133(i+1,n)*binomial(k-1,i)*(-1)^(i-k-1),i=0..k-1) ;
end proc:
seq(seq(A117936(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
-
(* A = A073133 *) A[, 1] = 1; A[n, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]];
T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
-
@CachedFunction
def A073133(n,k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n,k-1) + A073133(n,k-2)
def A117936(n,k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1,n) for j in (0..k-1) )
flatten([[A117936(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021
A091913
Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k= n, where k=0..max(n-1,0).
Original entry on oeis.org
0, 1, 3, 2, 7, 9, 3, 15, 28, 18, 4, 31, 75, 70, 30, 5, 63, 186, 225, 140, 45, 6, 127, 441, 651, 525, 245, 63, 7, 255, 1016, 1764, 1736, 1050, 392, 84, 8, 511, 2295, 4572, 5292, 3906, 1890, 588, 108, 9, 1023, 5110, 11475, 15240, 13230, 7812, 3150, 840, 135, 10, 2047
Offset: 0
Triangle begins
0;
1;
3, 2;
7, 9, 3;
15, 28, 18, 4;
31, 75, 70, 30, 5;
63, 186, 225, 140, 45, 6;
...
a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30.
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004
A309717
Convolve Fibonacci, Pell and bronze Fibonacci numbers.
Original entry on oeis.org
0, 0, 0, 1, 6, 28, 114, 432, 1566, 5517, 19068, 65044, 219852, 738316, 2468028, 8222805, 27330858, 90685224, 300521622, 994991716, 3292117698, 10887332473, 35992718136, 118958691528, 393093822744, 1298783453112, 4290755845176, 14174217683209, 46821054068430, 154655837126740
Offset: 0
Showing 1-5 of 5 results.
Comments