A006723 Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.
1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, 1925, 7203, 34081, 227321, 1737001, 14736001, 63232441, 702617001, 8873580481, 122337693603, 1705473647525, 22511386506929, 251582370867257, 9254211194697641, 215321535159114017
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..100
- R. H. Buchholz and R. L. Rathbun, An infinite set of Heron triangles with two rational medians, Amer. Math. Monthly, 104 (1997), 107-115.
- Chang, Xiangke; Hu, Xingbiao, A conjecture based on Somos-4 sequence and its extension, Linear Algebra Appl. 436, No. 11, 4285-4295 (2012).
- S. Fomin and A. Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001.
- David Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42.
- R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT], 2007.
- J. L. Malouf, An integer sequence from a rational recursion, Discr. Math. 110 (1992), 257-261.
- J. Propp, The Somos Sequence Site
- R. M. Robinson, Periodicity of Somos sequences, Proc. Amer. Math. Soc., 116 (1992), 613-619.
- Vladimir Shevelev and Peter J. C. Moses, On a sequence of polynomials with hypothetically integer coefficients, arXiv preprint arXiv:1112.5715 [math.NT], 2011.
- Michael Somos, Somos 7 Sequence
- Michael Somos, Brief history of the Somos sequence problem
- Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
- A. van der Poorten, Hyperelliptic curves, continued fractions and Somos sequences, arXiv:math/0608247 [math.NT], 2006.
- Eric Weisstein's World of Mathematics, Somos Sequence.
- Index entries for two-way infinite sequences
Programs
-
Haskell
a006723 n = a006723_list !! n a006723_list = [1,1,1,1,1,1,1] ++ zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006723_list where b i = zipWith (*) (drop i a006723_list) (drop (7-i) a006723_list) -- Reinhard Zumkeller, Jan 22 2012
-
Magma
I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + Self(n-2)*Self(n-5) + Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1,a[n] == (a[n-1]a[n-6]+a[n-2]a[n-5]+a[n-3]a[n-4])/a[n-7]},a,{n,30}] (* Harvey P. Dale, Jan 19 2012 *)
-
PARI
{a(n) = my(v); if( n<0, n = 6-n); if( n<7, 1, n++; v = vector(n, k, 1); for( k=8, n, v[k] = (v[k-1] * v[k-6] + v[k-2] * v[k-5] + v[k-3] * v[k-4]) / v[k-7]); v[n])};
-
Python
from gmpy2 import divexact A006723 = [1,1,1,1,1,1,1] for n in range(7,101): A006723.append(divexact(A006723[n-1]*A006723[n-6]+A006723[n-2]*A006723[n-5]+A006723[n-3]*A006723[n-4],A006723[n-7])) # Chai Wah Wu, Sep 01 2014
Formula
a(6 - n) = a(n) for all n in Z.
a(n) = ((8-2*(-1)^n)*a(n-5)*a(n-3)-a(n-4)^2)/a(n-8). - Bruno Langlois, Aug 09 2016
Extensions
More terms from James A. Sellers, Aug 22 2000