A006789 Bessel numbers: the number of nonoverlapping partitions of an n-set into equivalence classes.
1, 1, 2, 5, 14, 43, 143, 509, 1922, 7651, 31965, 139685, 636712, 3020203, 14878176, 75982829, 401654560, 2194564531, 12377765239, 71980880885, 431114329728, 2656559925883, 16825918195484, 109439943234749, 730365368850192
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 43*x^5 + 143*x^6 + 509*x^7 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..640
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- David Callan, An involution on set partitions, arXiv:2204.02556 [math.CO], 2022.
- A. Claesson, Generalized pattern avoidance, Europ. J. Combin., 22 (2001), 961-971.
- A. Claesson and T. Mansour, Enumerating permutations avoiding a pair of Babson-Steingrimsson patterns, arXiv:math/0107044 [math.CO], 2001-2010.
- P. Flajolet and R. Schott, Non-overlapping Partitions, Continued Fractions, Bessel Functions and a Divergent Series In European Journal of Combinatorics, Vol. 11, 1990, pp. 412-432.
- M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Mathematica
nmax = 24; m = SparseArray[{{i_, i_} :> i, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {nmax, nmax}]; a[n_] := MatrixPower[m, n][[1, 1]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 22 2012, after Gary W. Adamson *)
-
PARI
{a(n) = local(m); if( n<0, 0, m = contfracpnqn(matrix(2, n\2, i, k, if( i==1, -x^2, 1 - (k+1)*x))); polcoeff( 1 / (1 - x + m[2,1] / m[1,1]) + x * O(x^n), n))}; /* Michael Somos, Oct 06 2003 */
-
PARI
{a(n) = local(A); if( n<0, 0, A = O(x^0); for(i=0, n\2, A = subst((1 + x) / (1 - x^2*A), x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Sep 22 2005 */
Formula
G.f.: 1 / (1 - x - x^2 / (1 - 2*x - x^2 / (1 - 3*x - x^2 / ...))) (a continued fraction). - Michael Somos, Oct 06 2003
G.f.: 1/(U(0)-1) + 1/x^2 where U(k)= 1 - x*(k+1) + x/(1 + x/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 13 2012
G.f.: T(0)/(1-x), where T(k) = 1 - x^2/( x^2 - (1-x*(k+1))*(1-x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 02 2013
a(n) ~ Sum_{k>=0} k^(n+2)/(k!)^2 = A086880(n+2). - Vaclav Kotesovec, Aug 24 2014
Conjecture: a(n) = R(n, 0) for n >= 0 where R(n, q) = R(n-1, q+1) + Sum_{j=0..q-1} binomial(q, j+1)*R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Aug 11 2023
Extensions
Edited by Michael Somos, Oct 06 2003
Comments