cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006794 Primorial -1 primes: primes p such that -1 + product of primes up to p is prime.

Original entry on oeis.org

3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033, 15877, 843301, 1098133, 3267113, 4778027, 6354977, 6533299
Offset: 1

Views

Author

Keywords

Comments

Or, p such that primorial(p) - 1 is prime.
Conjecture: if p# - 1 is a prime number, then the previous prime is greater than p# - exp(1)*p. - Arkadiusz Wesolowski, Jun 19 2016

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 4-5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 111.

Crossrefs

Cf. A057704 (Primorial - 1 prime indices: integers n such that the n-th primorial minus 1 is prime).

Programs

  • Mathematica
    primorial[p_] := Product[Prime[k], {k, 1, PrimePi[p]}]; Select[Prime[Range[1900]], PrimeQ[primorial[#] - 1] &] (* Jean-François Alcover, Mar 16 2011 *)
    Transpose[With[{pr=Prime[Range[2000]]},Select[Thread[{Rest[FoldList[ Times,1,pr]], pr}], PrimeQ[ First[#]-1]&]]][[2]] (* Harvey P. Dale, Jun 21 2011 *)
    With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] - 1, ?PrimeQ]]]]] (* _Eric W. Weisstein, Nov 03 2015 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(prod(i=1,primepi(n),prime(i))-1) \\ Charles R Greathouse IV, Apr 29 2015
    
  • Python
    from sympy import nextprime, isprime
    A006794_list, p, q = [], 2, 2
    while p < 10**5:
        if isprime(q-1):
            A006794_list.append(p)
        p = nextprime(p)
        q *= p # Chai Wah Wu, Apr 03 2021

Formula

a(n) = A000040(A057704(n)).
a(n) = prime(A057704(n)).

Extensions

Stated incorrectly in CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 101; corrected in 2nd printing.
Corrected by Arlin Anderson (starship1(AT)gmail.com), who reports that he and Don Robinson have checked this sequence through about 63000 digits without finding another term (Jul 04 2000).
a(19)-a(20) from Eric W. Weisstein, Dec 08 2015 (Mark Rodenkirch confirms based on saved log files that all p < 700000 have been tested)
a(21) from Jeppe Stig Nielsen, Oct 19 2021
a(22)-a(24) from Jeppe Stig Nielsen, Dec 16 2024