A006872 Numbers k such that phi(k) = phi(sigma(k)).
1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1
Keywords
References
- S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
- R. K. Guy, Unsolved Problems in Number Theory, B42.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000 (terms 1..1000 from T. D. Noe, terms 1001..12394 from Marius A. Burtea)
- S. W. Golomb, Letter to N. J. A. Sloane, Oct. 1992
- S. W. Golomb, Equality among number-theoretic functions, Unpublished manuscript. (Annotated scanned copy)
Crossrefs
Positions of zeros in A353636.
Programs
-
Haskell
a006872 n = a006872_list !! (n-1) a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..] -- Reinhard Zumkeller, Jul 14 2015
-
Magma
[n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
-
Mathematica
Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
-
PARI
lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
Extensions
More terms from Jud McCranie