A006899 Numbers of the form 2^i or 3^j.
1, 2, 3, 4, 8, 9, 16, 27, 32, 64, 81, 128, 243, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 19683, 32768, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 14348907, 16777216, 33554432
Offset: 1
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- Boris Alexeev, Minimal DFAs for testing divisibility, arXiv:cs/0309052 [cs.CC], 2003.
- Jung-Chao Ban, Wen-Guei Hu, and Song-Sun Lin, Pattern generation problems arising in multiplicative integer systems, arXiv preprint arXiv:1207.7154 [math.DS], 2012.
- Lukas Spiegelhofer, Collisions of the binary and ternary sum-of-digits functions, arXiv:2105.11173 [math.NT], 2021.
- Eric Weisstein's World of Mathematics, Pillai's Theorem.
Crossrefs
Programs
-
Haskell
a006899 n = a006899_list !! (n-1) a006899_list = 1 : m (tail a000079_list) (tail a000244_list) where m us'@(u:us) vs'@(v:vs) = if u < v then u : m us vs' else v : m us' vs -- Reinhard Zumkeller, Oct 09 2013
-
Maple
A:={seq(2^n,n=0..63)}: B:={seq(3^n,n=0..40)}: C:=sort(convert(A union B,list)): seq(C[j],j=1..39); # Emeric Deutsch, Aug 03 2005
-
Mathematica
seqMax = 10^20; Union[2^Range[0, Floor[Log[2, seqMax]]], 3^Range[0, Floor[Log[3, seqMax]]]] (* Stefan Steinerberger, Apr 08 2006 *)
-
PARI
is(n)=n>>valuation(n,2)==1 || n==3^valuation(n,3) \\ Charles R Greathouse IV, Aug 29 2016
-
PARI
upto(n) = my(res = vector(logint(n, 2) + logint(n, 3) + 1), t = 1); res[1] = 1; for(i = 2, 3, for(j = 1, logint(n, i), t++; res[t] = i^j)); vecsort(res) \\ David A. Corneth, Oct 26 2017
-
PARI
a(n) = my(i0= logint(3^(n-1),6), i= logint(3^n,6)); if(i > i0, 2^i, my(j=logint(2^n,6)); 3^j) \\ Ruud H.G. van Tol, Nov 10 2022
-
Python
from sympy import integer_log def A006899(n): return 1<
Chai Wah Wu, Oct 01 2024
Formula
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Jun 03 2022
a(n)^(1/n) tends to 3^(log(2)/log(6)) = 2^(log(3)/log(6)) = 1.529592328491883538... - Vaclav Kotesovec, Sep 19 2024
Extensions
More terms from Reinhard Zumkeller, Jun 22 2003
Comments