A006935 Even pseudoprimes (or primes) to base 2: even n that divide 2^n - 2.
2, 161038, 215326, 2568226, 3020626, 7866046, 9115426, 49699666, 143742226, 161292286, 196116194, 209665666, 213388066, 293974066, 336408382, 377994926, 410857426, 665387746, 667363522, 672655726, 760569694, 1066079026, 1105826338, 1423998226, 1451887438, 1610063326, 2001038066, 2138882626, 2952654706, 3220041826
Offset: 1
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
- J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of b^n+/-1 b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers, Contemporary Math. v.22.
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 91.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1319 (contains all terms below 2*10^15; first 156 terms from R. G. E. Pinch)
- N. G. W. H. Beeger, On even numbers m dividing 2^m-2, Amer. Math. Monthly, Vol. 58, No. 8 (1951), pp. 553-555.
- D. H. Lehmer, On the Converse of Fermat's Theorem II, Amer. Math. Monthly, Vol. 56, No. 5 (1949), pp. 300-309.
- A. Rotkiewicz and K. Ziemak, On Even Pseudoprimes, The Fibonacci Quarterly, Vol. 33, No. 2 (1995), pp. 123-125.
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime.
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
Select[2*Range[5000000],PowerMod[2,#,#]==2&] (* Harvey P. Dale, Dec 02 2012 *)
-
PARI
is(n)=Mod(2,n)^n==2 && n%2==0 \\ Charles R Greathouse IV, Dec 02 2014
Extensions
More terms from Robert G. Wilson v
Corrected by T. D. Noe, May 27 2003
b-file corrected by Max Alekseyev, Oct 09 2016
Comments