cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033687 Theta series of hexagonal lattice A_2 with respect to deep hole divided by 3.

Original entry on oeis.org

1, 1, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 2, 0, 2, 0, 3, 2, 0, 0, 2, 1, 2, 0, 2, 2, 2, 0, 0, 0, 4, 0, 2, 1, 2, 0, 2, 2, 0, 0, 1, 2, 2, 0, 4, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 3, 2, 2, 0, 2, 0, 0, 0, 2, 3, 2, 0, 0, 2, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 4, 0, 0, 1, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 1, 2, 0, 0, 4, 2, 2, 0, 2
Offset: 0

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
a(n)=0 if and only if A000731(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008
Number of 3-core partitions of n (denoted c_3(n) in Granville and Ono, p. 340). - Brian Hopkins, May 13 2008
Denoted by g_1(q) in Cynk and Hulek in Remark 3.4 on page 12 (but not explicitly listed).
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 2*x^6 + x^8 + 2*x^9 + 2*x^10 + 2*x^12 + 2*x^14 + ...
G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + q^25 + 2*q^28 + 2*q^31 + 2*q^37 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.35) and (32.351).

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(9), 1), 316) [2]; /* Michael Somos, May 06 2015 */
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 3 n + 1, KroneckerSymbol[ -3, #] &]]; (* Michael Somos, Sep 23 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Sep 01 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 3*n + 1, d, kronecker( -3, d)))}; /* Michael Somos, Nov 03 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor( 3*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%6==1, e+1, 1-e%2)))}; /* Michael Somos, May 06 2015 */
    

Formula

Euler transform of period 3 sequence [1, 1, -2, ...].
Expansion of q^(-1/3) * eta(q^3)^3 / eta(q) in powers of q.
a(4*n + 1) = a(n). - Michael Somos, Dec 06 2004
a(n) = b(3*n + 1) where b(n) is multiplicative and b(p^e) = 0^e if p = 3, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6). - Michael Somos, May 20 2005
Given g.f. A(x), B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - 2*u*w^2 - v^3. - Michael Somos, Dec 06 2004
Given g.f. A(x), B(q)= q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3^2 + u1*u6^2 - u1*u3*u6 - u2^2*u3. - Michael Somos, May 20 2005
Given g.f. A(x), B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2*u3^2 + 2*u2*u3*u6 + 4*u2*u6^2 - u1^2*u6. - Michael Somos, May 20 2005
G.f.: Product_{k>0} (1 - x^(3*k))^3 / (1 - x^k).
G.f.: Sum_{k in Z} x^k / (1 - x^(3*k + 1)) = Sum_{k in Z} x^k / (1 - x^(6*k + 2)). - Michael Somos, Nov 03 2005
Expansion of q^(-1) * c(q^3) / 3 = q^(-1) * (a(q) - b(q)) / 9 in powers of q^3 where a(), b(), c() are cubic AGM theta functions. - Michael Somos, Dec 25 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A005928.
a(n) = Sum_{d|3n+1} LegendreSymbol{d,3} - Brian Hopkins, May 13 2008
q-series for a(n): Sum_{n >= 0} q^(n^2+n)(1-q)(1-q^2)...(1-q^n)/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))). [From Jeremy Lovejoy, Jun 12 2009]
a(n) = A002324(3*n + 1). 3*a(n) = A005882(n) = A033685(3*n + 1). - Michael Somos, Apr 04 2003
G.f.: (2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5)) / 3 where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018
Sum_{k=1..n} a(k) ~ 2*Pi*n/3^(3/2). - Vaclav Kotesovec, Dec 17 2022

A008559 a(1)=2; thereafter, convert a(n-1) from base 10 to base 2 but regard the result as a base 10 number.

Original entry on oeis.org

2, 10, 1010, 1111110010, 1000010001110100011000101111010
Offset: 1

Views

Author

Keywords

Comments

The previous number is converted to binary digits and then the digits are regarded as decimal digits in the next number in the sequence. - Michael Somos, May 16 2014
The next term has 100 digits. - Harvey P. Dale, Jul 16 2011
The number of decimal digits of a(n) is A242347(n). - Robert G. Wilson v, Jul 10 2013
log(a(n))/log(a(n-1)) ~ log_2(10) = A020862. - Robert G. Wilson v, Jul 10 2013

References

  • Clifford Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.

Crossrefs

Cf. A006937 (essentially the same sequence).
For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • Maple
    f:=proc(n) local i,j,r; i:=convert(n,base,2); j:=add(i[r]*10^(r-1),r=1..nops(i)); end;
    g:=proc(n,M) global f; local a,b,t1; a:=n; t1:=[a]; for i from 1 to M do b:=f(a); t1:=[op(t1),b]; a:=b; od; t1; end; g(2,5); # N. J. A. Sloane, Jul 14 2015
  • Mathematica
    NestList[FromDigits[IntegerDigits[#,2]]&,2,5] (* Harvey P. Dale, Jul 16 2011 *)
  • PARI
    lista(nn) = my(k=2); print1(k); for(n=2, nn, print1(", ", k=fromdigits(binary(k)))); \\ Jinyuan Wang, Jan 18 2025
  • Python
    A008559_list = [2]
    for _ in range(5):
        A008559_list.append(int(bin(A008559_list[-1])[2:]))
    # Chai Wah Wu, Dec 26 2014
    

Extensions

Comment corrected by Chai Wah Wu, Dec 26 2014

A260024 Convert the last term from decimal to binary! a(1)=5.

Original entry on oeis.org

5, 101, 1100101, 100001100100101000101, 1010110101111001011010001101011011001100110110011001100101110100101
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

References

  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • Mathematica
    NestList[FromDigits[IntegerDigits[#,2]]&,5,5] (* Harvey P. Dale, Jun 23 2025 *)

A260025 Convert the last term from decimal to binary! a(1)=4.

Original entry on oeis.org

4, 100, 1100100, 100001100100101000100, 1010110101111001011010001101011011001100110110011001100101110100100
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • Mathematica
    NestList[FromDigits[IntegerDigits[#,2]]&,4,5] (* Harvey P. Dale, Jun 11 2017 *)
  • PARI
    a(n) = my(k=4); for(i=2, n, k=fromdigits(binary(k))); k; \\ Jinyuan Wang, Jan 18 2025

A260026 Convert the last term from decimal to binary! a(1)=6.

Original entry on oeis.org

6, 110, 1101110, 100001100110100110110, 1010110101111001011010001101011100010111010110010110001101100011110
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • PARI
    a(n) = my(k=6); for(i=2, n, k=fromdigits(binary(k))); k; \\ Jinyuan Wang, Jan 18 2025

A260027 Convert the last term from decimal to binary! a(1)=7.

Original entry on oeis.org

7, 111, 1101111, 100001100110100110111, 1010110101111001011010001101011100010111010110010110001101100011111
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

A260028 Convert the last term from decimal to binary! a(1)=8.

Original entry on oeis.org

8, 1000, 1111101000, 1000010001110100000111001001000
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • PARI
    a(n) = my(k=8); for(i=2, n, k=fromdigits(binary(k))); k; \\ Jinyuan Wang, Jan 18 2025

A260029 Convert the last term from decimal to binary! a(1)=9.

Original entry on oeis.org

9, 1001, 1111101001, 1000010001110100000111001001001
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

A260030 Convert the last term from decimal to binary! a(1)=12.

Original entry on oeis.org

12, 1100, 10001001100, 1001010100000110110010101010001100
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

Comments

The next term has 110 digits. - Harvey P. Dale, May 15 2018

Crossrefs

For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

Programs

  • Mathematica
    NestList[FromDigits[IntegerDigits[#,2]]&,12,4] (* Harvey P. Dale, May 15 2018 *)
Showing 1-9 of 9 results.