A006951 Number of conjugacy classes in GL(n,2).
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
Offset: 0
Keywords
Examples
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have (f(m) = 2^(m-1)*(2-1) = 2^(m-1) and) f([1^4]) = 2^3 = 8, f([2,1^2]) = 1*2^1 = 2, f([2^2]) = 2^1 = 2, f([3,1]) = 1*1 = 1, f([4]) = 1, the sum is 8+2+2+1+1 = 14 = a(4). - _Joerg Arndt_, Jan 02 2013
References
- W. D. Smith, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 161
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Magma
/* The program does not work for n>19: */ [1] cat [NumberOfClasses(GL(n,2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
-
Maple
with(numtheory): b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1: a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *) Table[Sum[2^(Length[ptn]-Length[Split[ptn]]),{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 21 2019 *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-2*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 02 2013 */
Formula
G.f.: Product_{n>=1} (1-x^n)/(1-2*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
Euler transform of A008965. - Christian G. Bower, Jan 29 2004
a(n) ~ 2^n - (1+sqrt(2) + (-1)^n*(1-sqrt(2))) * 2^(n/2-1). - Vaclav Kotesovec, Nov 21 2015
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(2^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018
Extensions
More terms from Christian G. Bower, Jan 29 2004
Comments