A006952 Number of conjugacy classes in GL(n,3).
1, 2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944, 176808, 531128, 1593288, 4781952, 14345792, 43043622, 129130584, 387411144, 1162232520, 3486755688, 10460266224, 31380972784, 94142915640, 282429275616, 847287817866, 2541865038832, 7625595108432
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. D. Smith, personal communication.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 162
- I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
Programs
-
Magma
/* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
-
Maple
with(numtheory): b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1: a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1, N, (1-x^n)/(1-3*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 02 2013 */
Formula
G.f.: Product_{n>=1} (1-x^n)/(1-3*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
a(n) ~ 3^n - (1+sqrt(3) + (-1)^n*(1-sqrt(3))) * 3^(n/2) / 4. - Vaclav Kotesovec, May 06 2018
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(3^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018
Extensions
More terms from Alois P. Heinz, Nov 03 2012