cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006952 Number of conjugacy classes in GL(n,3).

Original entry on oeis.org

1, 2, 8, 24, 78, 232, 720, 2152, 6528, 19578, 58944, 176808, 531128, 1593288, 4781952, 14345792, 43043622, 129130584, 387411144, 1162232520, 3486755688, 10460266224, 31380972784, 94142915640, 282429275616, 847287817866, 2541865038832, 7625595108432
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. D. Smith, personal communication.

Crossrefs

Programs

  • Magma
    /* The program does not work for n>12: */ [1] cat [NumberOfClasses(GL(n, 3)) : n in [1..12]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi, Jan 23 2013
    
  • Maple
    with(numtheory):
    b:= n-> add(phi(d)*3^(n/d), d=divisors(n))/n-1:
    a:= proc(n) option remember; `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*3^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] =  If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N);
    gf=prod(n=1, N, (1-x^n)/(1-3*x^n)  );
    v=Vec(gf)
    /* Joerg Arndt, Jan 02 2013 */

Formula

G.f.: Product_{n>=1} (1-x^n)/(1-3*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
a(n) ~ 3^n - (1+sqrt(3) + (-1)^n*(1-sqrt(3))) * 3^(n/2) / 4. - Vaclav Kotesovec, May 06 2018
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(3^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018

Extensions

More terms from Alois P. Heinz, Nov 03 2012