A006955 Denominator of (2n+1) B_{2n}, where B_n are the Bernoulli numbers.
1, 2, 6, 6, 10, 6, 210, 2, 30, 42, 110, 6, 546, 2, 30, 462, 170, 6, 51870, 2, 330, 42, 46, 6, 6630, 22, 30, 798, 290, 6, 930930, 2, 102, 966, 10, 66, 1919190, 2, 30, 42, 76670, 6, 680862, 2, 690, 38874, 470, 6, 46410, 2, 330, 42, 106, 6, 1919190
Offset: 0
Examples
(n+1)*B_n gives the sequence 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 260, (6.4.13).
- L. Euler, (E393) De summis serierum numeros Bernoullianos involventium, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 15, p. 93.
- M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad., 71 A (1995), 192-193.
- Index entries for sequences related to Bernoulli numbers.
Programs
-
Maple
gf := z / (1 - exp(-z)): ser := series(gf, z, 220): seq(denom((n+1)!*coeff(ser, z, n)), n=0..108, 2); # Peter Luschny, Aug 29 2020
-
Mathematica
Denominator[Table[(2n+1)BernoulliB[2n],{n,0,60}]] (* Harvey P. Dale, Nov 03 2011 *)
-
PARI
a(n) = denominator((2*n+1)*bernfrac(2*n)); \\ Michel Marcus, Aug 06 2017
Formula
Apparently a(n) = denominator(Sum_{k=0..2*n-1} (-1)^(2*n-k+1)*E1(2*n, k+1)/ binomial(2*n, k+1)), where E1(n, k) denotes the first-order Eulerian numbers A123125. - Peter Luschny, Feb 17 2021
Comments