cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006957 Self-convolution of numbers of preferential arrangements.

Original entry on oeis.org

1, 2, 7, 32, 185, 1310, 11067, 109148, 1234045, 15752858, 224169407, 3518636504, 60381131265, 1124390692886, 22577494959427, 486212633129300, 11177317486573445, 273173247028616594, 7072436847620016327, 193351544314753174736, 5565941751233499986185
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; `if`(n<=1, 1,
          add(binomial(n, k) *f(n-k), k=1..n))
        end:
    a:= n-> add(f(k)*f(n-k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 02 2009
  • Mathematica
    t[n_] := Sum[StirlingS2[n, k]*k!, {k, 0, n}]; Table[Sum[t[k]*t[n-k], {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Apr 09 2014, after Emanuele Munarini *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(t(k)*t(n-k),k,0,n),n,0,20); /* Emanuele Munarini, Oct 02 2012 */
    
  • PARI
    a006957(n)=my(x='x+O('x^(n+2))); Vec((x-2*log(2-exp(x)))/(4-exp(x)))[n+1]*(n+1)! \\ Hugo Pfoertner, Dec 27 2024

Formula

a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 08 2014
G.f.: (Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - k*x))^2. - Ilya Gutkovskiy, Apr 06 2019
a(n) = (n+1)! [x^(n+1)] (x-2*log(2-exp(x)))/(4-exp(x)). - Ira M. Gessel, Dec 26 2024

Extensions

More terms from Alois P. Heinz, Feb 02 2009