A006960 Reverse and Add! sequence starting with 196.
196, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, 35322452, 60744805, 111589511, 227574622, 454050344, 897100798, 1794102596, 8746117567, 16403234045, 70446464506, 130992928913, 450822227944, 900544455998, 1800098901007, 8801197801088, 17602285712176
Offset: 0
Examples
From _M. F. Hasler_, Apr 13 2019: (Start) Start with 196 = a(0), then: A056964(196) = 196 + 691 = 887 = a(1); then: A056964(887) = 887 + 788 = 1675 = a(2); then: A056964(1675) = 1675 + 5761 = 7436 = a(3); then: A056964(7436) = 7436 + 6347 = 13783 = a(4); then: A056964(13783) = 13783 + 38731 = 52514 = a(5); etc. (End)
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 196, p. 58, Ellipses, Paris 2008.
- D. H. Lehmer, "Sujets d'étude. No. 74," Sphinx (Bruxelles), 8 (1938), 12-13. (This is the currently earliest known reference to the 196 Problem). - James D. Klein, Apr 09 2012
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
- Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975), pages PC30-6 to PC30-9.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Michael Lee, Table of n, a(n) for n = 0..2390 (T. D. Noe supplied terms 0 to 200)
- Patrick De Geest, Some thematic websources
- Jason Doucette, World Records
- Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From _N. J. A. Sloane_, Nov 08 2012
- Felix Fröhlich, C++ program for this sequence
- Fred Gruenberger, How to handle numbers with thousands of digits, and why one might want to, Computer Recreations, Scientific American, 250 (No. 4, 1984), 19-26.
- R. K. Guy, What's left?, Math Horizons, Vol. 5, No. 4 (April 1998), pp. 5-7.
- Tim Irvin, About Two Months of Computing, or An Addendum to Mr. Walker's Three Years of Computing
- Madras Math's Amazing Number Facts, The Ultimate Palindrome
- I. Peter, More trajectories
- Wade VanLandingham, 196 and Other Lychrel Numbers
- John Walker, Three Years Of Computing: Final Report On The Palindrome Quest
- Eric Weisstein's World of Mathematics, 196-Algorithm.
- Eric Weisstein's World of Mathematics, Palindromic Number Conjecture.
- Index entries for sequences related to Reverse and Add!
Programs
-
Haskell
a006960 n = a006960_list !! n a006960_list = iterate a056964 196 -- Reinhard Zumkeller, Sep 22 2011
-
Maple
a:= proc(n) option remember; `if`(n=0, 196, (h-> h+ (s-> parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 25 2014
-
Mathematica
a = {196}; For[i = 2, i < 26, i++, a = Append[a, a[[i - 1]] + ToExpression[ StringReverse[ToString[a[[i - 1]]]]]]]; a NestList[#+FromDigits[Reverse[IntegerDigits[#]]]&,196,25] (* Harvey P. Dale, Jun 05 2011 *) NestList[#+IntegerReverse[#]&,196,25] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *)
-
PARI
A006960_vec(N=99)=vector(N,i,N=if(i>1,A056964(N),196)) \\ M. F. Hasler, Apr 13 2019
Formula
a(n+1) = A056964(a(n)). - A.H.M. Smeets, Jan 27 2019
Extensions
More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002
Comments