A006970 Euler pseudoprimes: composite numbers n such that 2^((n-1)/2) == +-1 (mod n).
341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585, 12801, 15709, 15841, 16705, 18705, 25761, 29341, 30121, 31621, 33153, 34945, 41041, 42799
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- C. Schick, Weiche Primzahlen und das 257-Eck, 2008, pages 140-146.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1231 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Euler Pseudoprime.
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
ok[?PrimeQ] = False; ok[n] := (p = PowerMod[2, (n - 1)/2, n]; p == Mod[1, n] || p == Mod[-1, n]); Select[2 Range[22000] + 1, ok] (* Jean-François Alcover, Apr 06 2011 *)
-
PARI
isok(n) = {if (!isprime(n) && (n%2), npm = Mod(2, n)^((n-1)/2); if ((npm == Mod(1,n)) || (npm == Mod(-1,n)), print1(n, ", ")););} \\ Michel Marcus, Sep 12 2015
Extensions
a(15) corrected (to 10261 from 10241) by Faron Moller (fm(AT)csd.uu.se)
Name edited by Thomas Ordowski, Nov 28 2023
Comments