cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006970 Euler pseudoprimes: composite numbers n such that 2^((n-1)/2) == +-1 (mod n).

Original entry on oeis.org

341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585, 12801, 15709, 15841, 16705, 18705, 25761, 29341, 30121, 31621, 33153, 34945, 41041, 42799
Offset: 1

Views

Author

Keywords

Comments

Pseudoprimes for the primality test from [Schick]: n odd is probably prime if (n-1) | A003558((n-1)/2). (Succeeds for 99.9975% of odd natural numbers less than 10^8.) - Jonathan Skowera, Jun 29 2013
Equivalently, these are composites n such that ((n-1)/2)^((n-1)/2) == +-1 (mod n). - Thomas Ordowski, Nov 28 2023

References

  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • C. Schick, Weiche Primzahlen und das 257-Eck, 2008, pages 140-146.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    ok[?PrimeQ] = False; ok[n] := (p = PowerMod[2, (n - 1)/2, n]; p == Mod[1, n] || p == Mod[-1, n]); Select[2 Range[22000] + 1, ok] (* Jean-François Alcover, Apr 06 2011 *)
  • PARI
    isok(n) = {if (!isprime(n) && (n%2), npm = Mod(2, n)^((n-1)/2); if ((npm == Mod(1,n)) || (npm == Mod(-1,n)), print1(n, ", ")););} \\ Michel Marcus, Sep 12 2015

Extensions

a(15) corrected (to 10261 from 10241) by Faron Moller (fm(AT)csd.uu.se)
Name edited by Thomas Ordowski, Nov 28 2023