cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007015 a(n) = smallest k such that phi(n+k) = phi(k).

Original entry on oeis.org

1, 4, 3, 8, 5, 24, 5, 13, 9, 20, 7, 48, 13, 16, 13, 26, 17, 52, 19, 37, 21, 44, 13, 96, 25, 34, 27, 32, 13, 124, 17, 52, 33, 41, 19, 104, 35, 52, 37, 65, 25, 123, 17, 73, 39, 92, 41, 183, 35, 76, 39, 68, 53, 156, 35, 64, 57, 116, 41, 248, 61, 73, 61, 104, 65, 144, 67, 82
Offset: 1

Views

Author

Keywords

Comments

Sierpiński proved that a solution exists for each n>0.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. B36
  • W. Sierpiński, Sur une propriété de la fonction phi(n), Publ. Math. Debrecen, 4 (1956), 184-185. - Jonathan Sondow, Sep 30 2012
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a007015 n = 1 + (fromJust $
                elemIndex 0 $ zipWith (-) a000010_list $ drop n a000010_list)
    -- Reinhard Zumkeller, Feb 10 2012
    
  • Mathematica
    kphi[n_]:=Module[{k=1},While[EulerPhi[n+k]!=EulerPhi[k],k++];k]; Array[kphi,70] (* Harvey P. Dale, Oct 24 2011 *)
  • PARI
    a(n)=k=1;while(eulerphi(k)!=eulerphi(n+k),k++);k
    vector(100,n,a(n)) \\ Derek Orr, May 05 2015

Extensions

More terms from Jud McCranie, Dec 24 1999