0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 2, 3, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 5, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 3, 3
Offset: 0
a(46) = a(1 + 3 + 8 + 34) = 4.
From _Joerg Arndt_, Nov 09 2012: (Start)
Connection to the compositions of n into odd parts (see comment):
[ #]: a(n) composition into odd parts
[ 0] [ 0] 1 1 1 1 1 1 1 1
[ 1] [ 1] 1 1 1 1 1 3
[ 2] [ 1] 1 1 1 1 3 1
[ 3] [ 1] 1 1 1 3 1 1
[ 4] [ 2] 1 1 1 5
[ 5] [ 1] 1 1 3 1 1 1
[ 6] [ 2] 1 1 3 3
[ 7] [ 2] 1 1 5 1
[ 8] [ 1] 1 3 1 1 1 1
[ 9] [ 2] 1 3 1 3
[10] [ 2] 1 3 3 1
[11] [ 2] 1 5 1 1
[12] [ 3] 1 7
[13] [ 1] 3 1 1 1 1 1
[14] [ 2] 3 1 1 3
[15] [ 2] 3 1 3 1
[16] [ 2] 3 3 1 1
[17] [ 3] 3 5
[18] [ 2] 5 1 1 1
[19] [ 3] 5 3
[20] [ 3] 7 1
Connection to the compositions of n into parts 1 or 2 (see comment):
[ #]: a(n) composition into parts 1 and 2
[ 0] [0] 1 1 1 1 1 1 1
[ 1] [1] 1 1 1 1 1 2
[ 2] [1] 1 1 1 1 2 1
[ 3] [1] 1 1 1 2 1 1
[ 4] [2] 1 1 1 2 2
[ 5] [1] 1 1 2 1 1 1
[ 6] [2] 1 1 2 1 2
[ 7] [2] 1 1 2 2 1
[ 8] [1] 1 2 1 1 1 1
[ 9] [2] 1 2 1 1 2
[10] [2] 1 2 1 2 1
[11] [2] 1 2 2 1 1
[12] [3] 1 2 2 2
[13] [1] 2 1 1 1 1 1
[14] [2] 2 1 1 1 2
[15] [2] 2 1 1 2 1
[16] [2] 2 1 2 1 1
[17] [3] 2 1 2 2
[18] [2] 2 2 1 1 1
[19] [3] 2 2 1 2
[20] [3] 2 2 2 1
(End)
From _Michel Dekking_, Mar 08 2020: (Start)
The third iterate of the morphism tau generating this sequence:
tau^3((0,0)) = (0,0)(1,1)(1,0)(1,0)(2,1)
= (a(0),0)(a(1),1)(a(2),0)(a(3),0)(a(4),1). (End)
Comments