cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007066 a(n) = 1 + ceiling((n-1)*phi^2), phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 7, 9, 12, 15, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 56, 59, 62, 64, 67, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 145, 148, 151, 153, 156, 159, 161, 164, 166
Offset: 1

Views

Author

Keywords

Comments

First column of dual Wythoff array, A126714.
Positions of 0's in A189479.
Skala (2016) asks if this sequence also gives the positions of the 0's in A283310. - N. J. A. Sloane, Mar 06 2017
Upper Wythoff sequence plus 2, when shifted by 1. - Michel Dekking, Aug 26 2019
In the Fokkink-Joshi paper, this sequence is the Cloitre (0,1,2,3)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n, else a(n) = a(n-1)+3. - Michael De Vlieger, Jul 30 2025

References

  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs," in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064437.
Apart from initial terms, same as A026356 (Cloitre (0,2,2,3)-hiccup sequence).
First column of A126714.
Complement is (essentially) A026355.
Equals 1 + A004957, also n + A004956.
First differences give A076662.
Complement of A099267. [Gerald Hillier, Dec 19 2008]
Cf. A193214 (primes). Except for the first term equal to A001950 + 2.
Cf. A026352 (Cloitre (1,1,2,3)-hiccup sequence), A064437 (Cloitre (0,1,3,2)-hiccup sequence).

Programs

  • Haskell
    a007066 n = a007066_list !! (n-1)
    a007066_list = 1 : f 2 [1] where
       f x zs@(z:_) = y : f (x + 1) (y : zs) where
         y = if x `elem` zs then z + 2 else z + 3
    -- Reinhard Zumkeller, Sep 26 2014, Sep 18 2011
    
  • Maple
    Digits := 100: t := (1+sqrt(5))/2; A007066 := proc(n) if n <= 1 then 1 else floor(1+t*floor(t*(n-1)+1)); fi; end;
  • Mathematica
    t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*)
    Flatten[Position[t, 0]] (*A007066*)
    Flatten[Position[t, 1]] (*A099267*)
    With[{grs=GoldenRatio^2},Table[1+Ceiling[grs(n-1)],{n,70}]] (* Harvey P. Dale, Jun 24 2011 *)
  • Python
    from math import isqrt
    def A007066(n): return (n+1+isqrt(5*(n-1)**2)>>1)+n if n > 1 else 1 # Chai Wah Wu, Aug 25 2022

Formula

a(n) = floor(1+phi*floor(phi*(n-1)+1)), phi=(1+sqrt(5))/2, n >= 2.
a(1)=1; for n>1, a(n)=a(n-1)+2 if n is already in the sequence, a(n)=a(n-1)+3 otherwise. - Benoit Cloitre, Mar 06 2003
a(n+1) = floor(n*phi^2) + 2, n>=1. - Michel Dekking, Aug 26 2019