A007067 Nearest integer to n*tau where tau = (1+sqrt(5))/2.
0, 2, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 70, 71, 73, 74, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 99, 100, 102, 104, 105
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Iain Fox, Table of n, a(n) for n = 0..10000 (first 1001 terms from Vincenzo Librandi)
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Programs
-
Maple
A007067:=n->round(n*(1+sqrt(5))/2); seq(A007067(n), n=0..100); # Wesley Ivan Hurt, Nov 27 2013
-
Mathematica
a[n_] := Round[n*GoldenRatio]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jun 27 2012 *)
-
PARI
a(n) = round(n*(1+sqrt(5))/2) \\ Michel Marcus, May 20 2013
-
Python
from math import isqrt def A007067(n): return (isqrt(5*n**2<<2)>>1)+n+1>>1 # Chai Wah Wu, Aug 26 2022
Formula
Satisfies a(a(n)) = a(n) + n. - Franklin T. Adams-Watters, Aug 14 2006
a(n) = floor((A066096(2*n) + 1)/2). - Peter Munn, Jan 12 2018
Comments