cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A050508 Golden rectangle numbers: n * A007067(n).

Original entry on oeis.org

0, 2, 6, 15, 24, 40, 60, 77, 104, 135, 160, 198, 228, 273, 322, 360, 416, 476, 522, 589, 640, 714, 792, 851, 936, 1000, 1092, 1188, 1260, 1363, 1470, 1550, 1664, 1749, 1870, 1995, 2088, 2220, 2318, 2457, 2600, 2706, 2856, 3010, 3124, 3285, 3404, 3572, 3744
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999

Keywords

Crossrefs

Cf. A007067.

Programs

A050510 Golden rectangular box numbers: a(n) = n*A007067(n)*A007067(A007067(n)).

Original entry on oeis.org

0, 6, 30, 120, 240, 520, 960, 1386, 2184, 3240, 4160, 5742, 7068, 9282, 11914, 14040, 17472, 21420, 24534, 29450, 33280, 39270, 45936, 51060, 58968, 65000, 74256, 84348, 91980, 103588, 116130, 125550, 139776, 150414, 166430, 183540, 196272
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := Round[n*GoldenRatio];
    a[n_] := n*b[n]*b[b[n]];
    Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Dec 15 2017 *)
  • PARI
    b(n) = round(n*(1+sqrt(5))/2);
    a(n) = n*b(n)*b(b(n)); \\ Michel Marcus, Dec 15 2017

Formula

a(n) = n*round(n*(1+sqrt(5))/2)*round(round(n*(1+sqrt(5))/2)*(1+sqrt(5))/2). - Wesley Ivan Hurt, Apr 23 2021

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A191426 Dispersion of (3+[n*r]), where r=(golden ratio)=(1+sqrt(5))/2 and [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 17, 12, 7, 5, 30, 22, 14, 11, 8, 51, 38, 25, 20, 15, 10, 85, 64, 43, 35, 27, 19, 13, 140, 106, 72, 59, 46, 33, 24, 16, 229, 174, 119, 98, 77, 56, 41, 28, 18, 373, 284, 195, 161, 127, 93, 69, 48, 32, 21, 606, 462, 318, 263, 208, 153, 114, 80, 54, 36, 23, 983, 750, 517, 428, 339, 250, 187, 132, 90, 61, 40, 26
Offset: 1

Views

Author

Clark Kimberling, Jun 02 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022342 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...4...9...17..30
  2...6...12..22..38
  3...7...14..25..43
  5...11..20..35..59
  8...15..27..46..77
		

References

  • Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=#rows of T, r1=#rows to show *)
    c = 40; c1 = 12; (* c=#cols of T, c1=#cols to show *)
    x = GoldenRatio; f[n_] := Floor[n*x + 3]
    mex[list_] :=  NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191426 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]  (* A191426 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A191455 Dispersion of (floor(n*e)), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 8, 4, 13, 21, 10, 6, 35, 57, 27, 16, 7, 95, 154, 73, 43, 19, 9, 258, 418, 198, 116, 51, 24, 11, 701, 1136, 538, 315, 138, 65, 29, 12, 1905, 3087, 1462, 856, 375, 176, 78, 32, 14, 5178, 8391, 3974, 2326, 1019, 478, 212, 86, 38, 15, 14075, 22809
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...2....5....13...35
  3...8....21...57...154
  4...10...27...73...198
  6...16...43...116..315
  7...19...51...138..375
		

Crossrefs

Programs

  • Maple
    A191455 := proc(r, c)
        option remember;
        if c = 1 then
            A054385(r) ;
        else
            A022843(procname(r, c-1)) ;
        end if;
    end proc: # R. J. Mathar, Jan 25 2015
  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=Floor[n*E]   (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191455 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191455 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A007064 Numbers not of form "nearest integer to n*tau", tau = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 7, 9, 12, 14, 17, 20, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 48, 51, 54, 56, 59, 62, 64, 67, 69, 72, 75, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 124, 127, 130, 132, 135
Offset: 1

Views

Author

Keywords

Comments

First column of Stolarsky array.
This sequence and A057843 are very similar - this can be seen if the terms equal to 4 are aligned. - Thomas Baruchel, Nov 04 2003

References

  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007067.

Programs

  • Mathematica
    max = 100; Complement[ Range[ max*GoldenRatio], Round[ Range[max]*GoldenRatio]] (* Jean-François Alcover, Oct 10 2011 *)
  • PARI
    a(n) = tau=(1+sqrt(5))/2; floor(n*(1+tau) - tau/2) \\ Michel Marcus, May 21 2013
    
  • Python
    from math import isqrt
    def A007064(n): return (6*n-1+isqrt(5*((n<<1)-1)**2))>>2 # Chai Wah Wu, Feb 11 2025

Formula

a(n) = floor[n*(1+tau)-tau/2] =floor[n*2.6180...-0.8090...]. - Henry Bottomley, Sep 03 2001

A108539 a(n) = that prime p such that p/prime(n) is nearest to phi, the golden ratio: phi=(1+sqrt(5))/2.

Original entry on oeis.org

3, 5, 7, 11, 17, 23, 29, 31, 37, 47, 53, 59, 67, 71, 79, 83, 97, 97, 109, 113, 113, 127, 137, 149, 157, 163, 167, 173, 179, 181, 211, 211, 223, 223, 241, 241, 257, 263, 271, 281, 293, 293, 311, 313, 317, 317, 337, 359, 367, 373, 379, 389, 389, 409, 419, 421, 433
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2005

Keywords

Comments

a(n)*prime(n) is a term of A108540 iff abs(phi-a(n)/prime(n))<1.

Crossrefs

A108542 is a subsequence.

Programs

  • Mathematica
    a[n_] := Module[{x = GoldenRatio * Prime[n]}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; If[x - p1 < p2 - x, p1, p2]]; Array[a, 57] (* Amiram Eldar, Nov 28 2019 *)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A026355 a(n) = least k such that s(k) = n+1, where s = A026354.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110
Offset: 0

Views

Author

Keywords

Comments

Let f(1)=1, f(2)=q and f(k+2) = f(k+1)+f(k)-n; a(n) is the smallest positive integer q such that f(k) -> infinity as k -> infinity. - Benoit Cloitre, Aug 04 2002

Crossrefs

Cf. A000201, A005614, A026351. Different from A007067.

Programs

  • Python
    from math import isqrt
    def A026355(n): return (n-1+isqrt(5*(n-1)**2)>>1)+2 if n else 1 # Chai Wah Wu, Aug 25 2022

Formula

For n>0, a(n) = floor((n-1)*phi) + 2, where phi=(1+sqrt(5))/2.
Recurrences: a(n+1) = a(n)+(3 + sign(phi*n-a(n)))/2 for n>=0. Also a(n+1) = a(n) + 1 + A005614(n-2) for n>=2. - Benoit Cloitre, Aug 04 2002

A191452 Dispersion of (4,8,12,16,...), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 16, 8, 3, 64, 32, 12, 5, 256, 128, 48, 20, 6, 1024, 512, 192, 80, 24, 7, 4096, 2048, 768, 320, 96, 28, 9, 16384, 8192, 3072, 1280, 384, 112, 36, 10, 65536, 32768, 12288, 5120, 1536, 448, 144, 40, 11, 262144, 131072, 49152, 20480, 6144, 1792, 576
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...4....16...64....256
  2...8....32...128...512
  3...12...48...192...768
  5...20...80...320...1280
  6...24...96...384...1536
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=4n  (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191452 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191452 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

A191449 Dispersion of (3,6,9,12,15,...), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 9, 6, 4, 27, 18, 12, 5, 81, 54, 36, 15, 7, 243, 162, 108, 45, 21, 8, 729, 486, 324, 135, 63, 24, 10, 2187, 1458, 972, 405, 189, 72, 30, 11, 6561, 4374, 2916, 1215, 567, 216, 90, 33, 13, 19683, 13122, 8748, 3645, 1701, 648, 270, 99, 39, 14, 59049
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Transpose of A141396.
Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...3....9....27...81
  2...6....18...54...162
  4...12...36...108..324
  5...15...45...135..405
  7...21...63...189..567
		

Crossrefs

A054582: dispersion of (2,4,6,8,...).
A191450: dispersion of (2,5,8,11,...).
A191451: dispersion of (4,7,10,13,...).
A191452: dispersion of (4,8,12,16,...).

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=3n (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191449 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191449 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

Formula

T(i,j)=T(i,1)*T(1,j)=floor((3i-1)/2)*3^(j-1).
Showing 1-10 of 59 results. Next