A007089 Numbers in base 3.
0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211
Offset: 0
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง2.3 Positional Notation, p. 47.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- The Unicode Consortium, Tai Xuan Jing Symbols.
- Eric Weisstein's World of Mathematics, Ternary.
- Wikipedia, Ternary numeral system.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Sep. 1992
- Index entries for sequences related to Most Wanted Primes video.
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Haskell
a007089 0 = 0 a007089 n = 10 * a007089 n' + m where (n', m) = divMod n 3 -- Reinhard Zumkeller, Feb 19 2012
-
Maple
A007089 := proc(n) option remember; if n <= 0 then 0 else if (n mod 3) = 0 then 10*procname(n/3) else procname(n-1) + 1 fi fi end: [seq(A007089(n), n=0..729)]; # - N. J. A. Sloane, Mar 09 2019
-
Mathematica
Table[ FromDigits[ IntegerDigits[n, 3]], {n, 0, 50}]
-
PARI
a(n)=if(n<1,0,if(n%3,a(n-1)+1,10*a(n/3)))
-
PARI
a(n)=fromdigits(digits(n,3)) \\ Charles R Greathouse IV, Jan 08 2017
-
Python
def A007089(n): n,s = divmod(n,3); t = 1 while n: n,r = divmod(n,3); t *= 10; s += r*t return s # M. F. Hasler, Feb 15 2023
Formula
a(0)=0, a(n) = 10*a(n/3) if n==0 (mod 3), a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = 10*a(floor(n/3)) + (n mod 3) if n > 0, a(0) = 0. - M. F. Hasler, Feb 15 2023
Extensions
More terms from James Sellers, May 01 2000
Comments