cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007089 Numbers in base 3.

Original entry on oeis.org

0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digit > 2. Thus nonnegative integers in base 10 whose quadrupling by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง2.3 Positional Notation, p. 47.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007089 0 = 0
    a007089 n = 10 * a007089 n' + m where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Feb 19 2012
    
  • Maple
    A007089 := proc(n) option remember;
    if n <= 0 then 0
    else
      if (n mod 3) = 0 then 10*procname(n/3) else procname(n-1) + 1 fi
    fi end:
    [seq(A007089(n), n=0..729)]; # - N. J. A. Sloane, Mar 09 2019
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 3]], {n, 0, 50}]
  • PARI
    a(n)=if(n<1,0,if(n%3,a(n-1)+1,10*a(n/3)))
    
  • PARI
    a(n)=fromdigits(digits(n,3)) \\ Charles R Greathouse IV, Jan 08 2017
    
  • Python
    def A007089(n):
      n,s = divmod(n,3); t = 1
      while n: n,r = divmod(n,3); t *= 10; s += r*t
      return s # M. F. Hasler, Feb 15 2023

Formula

a(0)=0, a(n) = 10*a(n/3) if n==0 (mod 3), a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = 10*a(floor(n/3)) + (n mod 3) if n > 0, a(0) = 0. - M. F. Hasler, Feb 15 2023

Extensions

More terms from James Sellers, May 01 2000