cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 354 results. Next

A145204 Numbers whose representation in base 3 (A007089) ends in an odd number of zeros.

Original entry on oeis.org

0, 3, 6, 12, 15, 21, 24, 27, 30, 33, 39, 42, 48, 51, 54, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 105, 108, 111, 114, 120, 123, 129, 132, 135, 138, 141, 147, 150, 156, 159, 165, 168, 174, 177, 183, 186, 189, 192, 195, 201, 204, 210, 213, 216, 219, 222, 228, 231
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 04 2008

Keywords

Comments

Previous name: Complement of A007417.
Also numbers having infinitary divisor 3, or the same, having factor 3 in their Fermi-Dirac representation as product of distinct terms of A050376. - Vladimir Shevelev, Mar 18 2013
For n > 1: where even terms occur in A051064. - Reinhard Zumkeller, May 23 2013
If we exclude a(1) = 0, these are numbers whose squarefree part is divisible by 3, which can be partitioned into numbers whose squarefree part is congruent to 3 mod 9 (A055041) and 6 mod 9 (A055040) respectively. - Peter Munn, Jul 14 2020
The inclusion of 0 as a term might be viewed as a cultural preference: if we habitually wrote numbers enclosed in brackets and then used a null string of digits for zero, the natural number sequence in ternary would be [], [1], [2], [10], [11], [12], [20], ... . - Peter Munn, Aug 02 2020
The asymptotic density of this sequence is 1/4. - Amiram Eldar, Sep 20 2020

Crossrefs

Subsequence of A008585, A028983.
Subsequences: A016051, A055040, A055041, A329575.
Cf. A007089, A007417 (complement), A050376, A182581 (characteristic function).
Positions of 0s in A014578.
Excluding 0: the positions of odd numbers in A007949; equivalently, of even numbers in A051064; symmetric difference of A003159 and A036668.
Related to A042964 via A052330.
Related to A036554 via A064614.

Programs

  • Haskell
    a145204 n = a145204_list !! (n-1)
    a145204_list = 0 : map (+ 1) (findIndices even a051064_list)
    -- Reinhard Zumkeller, May 23 2013
    
  • Maple
    isA145204 := proc(n) local d, c;
    if n = 0 then return true fi;
    d := A007089(n); c := 0;
    while irem(d, 10) = 0 do c := c+1; d := iquo(d, 10) od;
    type(c, odd) end:
    select(isA145204, [$(0..231)]); # Peter Luschny, Aug 05 2020
  • Mathematica
    Select[ Range[0, 235], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // OddQ)&] (* Jean-François Alcover, Mar 18 2013 *)
    Join[{0}, Select[Range[235], OddQ @ IntegerExponent[#, 3] &]] (* Amiram Eldar, Sep 20 2020 *)
  • Python
    import numpy as np
    def isA145204(n):
        if n == 0: return True
        c = 0
        d = int(np.base_repr(n, base = 3))
        while d % 10 == 0:
            c += 1
            d //= 10
        return c % 2 == 1
    print([n for n in range(231) if isA145204(n)]) # Peter Luschny, Aug 05 2020
    
  • Python
    from sympy import integer_log
    def A145204(n):
        if n == 1: return 0
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+sum(((m:=x//9**i)-2)//3+(m-1)//3+2 for i in range(integer_log(x,9)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Feb 15 2025

Formula

a(n) = 3 * A007417(n-1) for n > 1.
A014578(a(n)) = 0.
For n > 1, A007949(a(n)) mod 2 = 1. [Edited by Peter Munn, Aug 02 2020]
{a(n) : n >= 2} = {A052330(A042964(k)) : k >= 1} = {A064614(A036554(k)) : k >= 1}. - Peter Munn, Aug 31 2019 and Dec 06 2020

Extensions

New name using a comment of Vladimir Shevelev by Peter Luschny, Aug 05 2020

A110529 Numbers n such that n in ternary representation (A007089) has a block of exactly a prime number of consecutive zeros.

Original entry on oeis.org

9, 18, 27, 28, 29, 36, 45, 54, 55, 56, 63, 72, 82, 83, 84, 85, 86, 87, 88, 89, 90, 99, 108, 109, 110, 117, 126, 135, 136, 137, 144, 153, 163, 164, 165, 166, 167, 168, 169, 170, 171, 180, 189, 190, 191, 198, 207, 216, 217, 218, 225, 234, 243, 246, 247, 248, 249
Offset: 1

Views

Author

Jonathan Vos Post, Sep 11 2005

Keywords

Comments

Related to the Baum-Sweet sequence, but ternary rather than binary and prime rather than odd.
a(n) is in this sequence iff n (base 3) = A007089(n) has a block (not a subblock) of a prime number (A000040) of consecutive zeros.

Examples

			a(1) = 9 because 9 (base 3) = 100, which has a block of 2 zeros.
a(2) = 18 because 18 (base 3) = 200, which has a block of 2 zeros.
a(3) = 27 because 27 (base 3) = 1000, which has a block of 3 zeros.
81 is not in this sequence because 81 (base 3) = 10000 has a block of 4 consecutive zeros and it does not matter that this has subblocks with 2 or 3 consecutive zeros because subblocks do not count here.
243 is in this sequence because 243 (base 3) = 100000, which has a block of 5 zeros.
252 is in this sequence because 252 (base 3) = 100100 which has two blocks of 2 consecutive zeros, but we do not require there to be only one such prime-zeros block.
2187 is in this sequence because 2187 (base 3) = 10000000, which has a block of 7 zeros.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 157.

Crossrefs

Programs

  • Mathematica
    Select[Range[250], Or @@ (First[ # ] == 0 && PrimeQ[Length[ # ]] &) /@ Split[IntegerDigits[ #, 3]] &] (* Ray Chandler, Sep 12 2005 *)
  • Python
    from re import split
    from sympy import isprime
    def ternary (n):
        if n == 0:
            return '0'
        nums = []
        while n:
            n, r = divmod(n, 3)
            nums.append(str(r))
        return ''.join(reversed(nums))
    seq_list, n = [],1
    while len(seq_list) < 10000:
        for d in split('1+|2+', ternary(n)[1:]):
            if isprime(len(d)):
                seq_list.append(n)
        n += 1
    # W. Zane Billings, Jun 28 2019

A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111
Offset: 0

Views

Author

Keywords

Comments

List of binary numbers. (This comment is to assist people searching for that particular phrase. - N. J. A. Sloane, Apr 08 2016)
Or, numbers that are sums of distinct powers of 10.
Or, numbers having only digits 0 and 1 in their decimal representation.
Complement of A136399; A064770(a(n)) = a(n). - Reinhard Zumkeller, Dec 30 2007
From Rick L. Shepherd, Jun 25 2009: (Start)
Nonnegative integers with no decimal digit > 1.
Thus nonnegative integers n in base 10 such that kn can be calculated by normal addition (i.e., n + n + ... + n, with k n's (but not necessarily k + k + ... + k, with n k's)) or multiplication without requiring any carry operations for 0 <= k <= 9. (End)
For n > 1: A257773(a(n)) = 10, numbers that are Belgian-k for k=0..9. - Reinhard Zumkeller, May 08 2015
For any integer n>=0, find the binary representation and then interpret as decimal representation giving a(n). - Michael Somos, Nov 15 2015
N is in this sequence iff A007953(N) = A101337(N). A028897 is a left inverse. - M. F. Hasler, Nov 18 2019
For n > 0, numbers whose largest decimal digit is 1. - Stefano Spezia, Nov 15 2023

Examples

			a(6)=110 because (1/2)*((1-(-1)^6)*10^0 + (1-(-1)^3)*10^1 + (1-(-1)^1)*10^2) = 10 + 100.
G.f. = x + 10*x^2 + 11*x^3 + 100*x^4 + 101*x^5 + 110*x^6 + 111*x^7 + 1000*x^8 + ...
.
  000    The numbers < 2^n can be regarded as vectors with
  001    a fixed length n if padded with zeros on the left
  010    side. This represents the n-fold Cartesian product
  011    over the set {0, 1}. In the example on the left,
  100    n = 3. (See also the second Python program.)
  101    Binary vectors in this format can also be seen as a
  110    representation of the subsets of a set with n elements.
  111    - _Peter Luschny_, Jan 22 2024
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 21.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991, p. 383.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are this one, A000120 (Hammingweight: sum of bits), A000788 (partial sums of A000120), A000069 (A000120 is odd), A001969 (A000120 is even), A023416 (number of bits 0), A059015 (partial sums). Bisections A099820 and A099821.
Cf. A028897 (convert binary to decimal).

Programs

  • Haskell
    a007088 0 = 0
    a007088 n = 10 * a007088 n' + m where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    A007088 := n-> convert(n, binary): seq(A007088(n), n=0..50); # R. J. Mathar, Aug 11 2009
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 39}]
    Table[Sum[ (Floor[( Mod[f/2 ^n, 2])])*(10^n) , {n, 0, Floor[Log[2, f]]}], {f, 1, 100}] (* José de Jesús Camacho Medina, Jul 24 2014 *)
    FromDigits/@Tuples[{1,0},6]//Sort (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    {a(n) = subst( Pol( binary(n)), x, 10)}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    {a(n) = if( n<=0, 0, n%2 + 10*a(n\2))}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    a(n)=fromdigits(binary(n),10) \\ Charles R Greathouse IV, Apr 08 2015
    
  • Python
    def a(n): return int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 10 2021
    
  • Python
    from itertools import product
    n = 4
    for p in product([0, 1], repeat=n): print(''.join(str(x) for x in p))
    # Peter Luschny, Jan 22 2024

Formula

a(n) = Sum_{i=0..m} d(i)*10^i, where Sum_{i=0..m} d(i)*2^i is the base 2 representation of n.
a(n) = (1/2)*Sum_{i>=0} (1-(-1)^floor(n/2^i))*10^i. - Benoit Cloitre, Nov 20 2001
a(n) = A097256(n)/9.
a(2n) = 10*a(n), a(2n+1) = a(2n)+1.
G.f.: 1/(1-x) * Sum_{k>=0} 10^k * x^(2^k)/(1+x^(2^k)) - for sequence as decimal integers. - Franklin T. Adams-Watters, Jun 16 2006
a(A000290(n)) = A001737(n). - Reinhard Zumkeller, Apr 25 2009
a(n) = Sum_{k>=0} A030308(n,k)*10^k. - Philippe Deléham, Oct 19 2011
For n > 0: A054055(a(n)) = 1. - Reinhard Zumkeller, Apr 25 2012
a(n) = Sum_{k=0..floor(log_2(n))} floor((Mod(n/2^k, 2)))*(10^k). - José de Jesús Camacho Medina, Jul 24 2014

A007090 Numbers in base 4.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digit > 3. Thus nonnegative integers in base 10 whose tripling (trebling) by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009
Interpreted in base 10: a(x)+a(y) = a(z) => x+y = z. The converse is not true in general. - Karol Bacik, Sep 27 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007608, A000042, A007088 (base 2), A007089 (base 3), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8), A007095 (base 9), A193890, A107715.

Programs

  • Haskell
    a007090 0 = 0
    a007090 n = 10 * a007090 n' + m where (n', m) = divMod n 4
    -- Reinhard Zumkeller, Apr 08 2013, Aug 11 2011
  • Maple
    A007090 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,4): return op(convert(l,base,10,10^nops(l))): end: seq(A007090(n),n=0..54); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 4]], {n, 0, 60}]
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,10*a(n/4)))
    
  • PARI
    A007090(n)=sum(i=1,#n=digits(n,4),n[i]*10^(#n-i)) \\ M. F. Hasler, Jul 25 2015 (Corrected by Jinyuan Wang, Oct 02 2019)
    
  • PARI
    apply( A007090(n)=fromdigits(digits(n,4)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    

Formula

a(n) = Sum_{d(i)*10^i: i=0, 1, ..., m}, where Sum_{d(i)*4^i: i=0, 1, ..., m} is the base 4 representation of n.
a(0) = 0, a(n) = 10*a(n/4) if n==0 (mod 4), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A007091 Numbers in base 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130, 131, 132, 133, 134, 140, 141, 142, 143, 144, 200, 201, 202, 203, 204, 210, 211, 212, 213, 214, 220, 221, 222, 223, 224, 230
Offset: 0

Views

Author

Keywords

Comments

From Rick L. Shepherd, Jun 25 2009: (Start)
Nonnegative integers with no decimal digit > 4.
Thus nonnegative integers in base 10 whose doubling by normal addition or multiplication requires no carry operation. (End)
It appears that this sequence corresponds to the numbers n for which twice the sum of digits of n is the sum of digits of 2*n. - Rémy Sigrist, Nov 22 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007092 (base 6), A007093 (base 7), A007094 (base 8), A007095 (base 9).

Programs

  • Maple
    A007091 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,5): return op(convert(l,base,10,10^nops(l))): end: seq(A007091(n),n=0..58); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 5]], {n, 0, 60}]
  • PARI
    a(n)=if(n<1,0,if(n%5,a(n-1)+1,10*a(n/5)))
    
  • PARI
    apply( A007091(n)=fromdigits(digits(n,5)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    
  • Python
    from gmpy2 import digits
    def A007091(n): return int(digits(n,5)) # Chai Wah Wu, Dec 26 2021

Formula

a(0)=0 a(n)=10*a(n/5) if n==0 (mod 5) a(n)=a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = n + 1/2*Sum_{k >= 1} 10^k*floor(n/5^k). Cf. A037454, A037462 and A102491. - Peter Bala, Dec 01 2016

A007095 Numbers in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84
Offset: 0

Views

Author

Keywords

Comments

Also numbers without 9 as a digit.
Complement of A011539: A102683(a(n)) = 0; A068505(a(n)) != a(n)). - Reinhard Zumkeller, Dec 29 2011

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8); A057104, A037479.
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8).
Cf. A082838.

Programs

  • Haskell
    a007095 = f . subtract 1 where
       f 0 = 0
       f v = 10 * f w + r   where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014, Dec 29 2011
    
  • Magma
    [ n: n in [0..74] | not 9 in Intseq(n) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    A007095 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,9): return op(convert(l,base,10,10^nops(l))): end: seq(A007095(n),n=0..67); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 9]], {n, 0, 75}]
  • PARI
    a(n)=if(n<1,0,if(n%9,a(n-1)+1,10*a(n/9)))
    
  • PARI
    A007095(n)=fromdigits(digits(n, 9)) \\ Michel Marcus, Dec 29 2018
    
  • Python
    # and others: see OEIS Wiki page (cf. LINKS).
    
  • Python
    from gmpy2 import digits
    def A007095(n): return int(digits(n,9)) # Chai Wah Wu, May 06 2025
  • sh
    seq 0 1000 | grep -v 9; # Joerg Arndt, May 29 2011
    

Formula

a(0) = 0, a(n) = 10*a(n/9) if n==0 (mod 9), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Sum_{n>1} 1/a(n) = A082838 = 22.92067... (Kempner series). - Bernard Schott, Dec 29 2018; edited by M. F. Hasler, Jan 13 2020

A005836 Numbers whose base-3 representation contains no 2.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 270, 271, 273, 274, 279, 280, 282, 283, 324, 325, 327, 328, 333, 334, 336, 337, 351, 352
Offset: 1

Views

Author

Keywords

Comments

3 does not divide binomial(2s, s) if and only if s is a member of this sequence, where binomial(2s, s) = A000984(s) are the central binomial coefficients.
This is the lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 3. - Robert Craigen (craigenr(AT)cc.umanitoba.ca), Jan 29 2001
In the notation of A185256 this is the Stanley Sequence S(0,1). - N. J. A. Sloane, Mar 19 2010
Complement of A074940. - Reinhard Zumkeller, Mar 23 2003
Sums of distinct powers of 3. - Ralf Stephan, Apr 27 2003
Numbers n such that central trinomial coefficient A002426(n) == 1 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
A039966(a(n)+1) = 1; A104406(n) = number of terms <= n.
Subsequence of A125292; A125291(a(n)) = 1 for n>1. - Reinhard Zumkeller, Nov 26 2006
Also final value of n - 1 written in base 2 and then read in base 3 and with finally the result translated in base 10. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) modulo 2 is the Thue-Morse sequence A010060. - Dennis Tseng, Jul 16 2009
Also numbers such that the balanced ternary representation is the same as the base 3 representation. - Alonso del Arte, Feb 25 2011
Fixed point of the morphism: 0 -> 01; 1 -> 34; 2 -> 67; ...; n -> (3n)(3n+1), starting from a(1) = 0. - Philippe Deléham, Oct 22 2011
It appears that this sequence lists the values of n which satisfy the condition sum(binomial(n, k)^(2*j), k = 0..n) mod 3 <> 0, for any j, with offset 0. See Maple code. - Gary Detlefs, Nov 28 2011
Also, it follows from the above comment by Philippe Lallouet that the sequence must be generated by the rules: a(1) = 0, and if m is in the sequence then so are 3*m and 3*m + 1. - L. Edson Jeffery, Nov 20 2015
Add 1 to each term and we get A003278. - N. J. A. Sloane, Dec 01 2019

Examples

			12 is a term because 12 = 110_3.
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
   0
   1
   3,  4
   9, 10, 12, 13
  27, 28, 30, 31, 36, 37, 39, 40
  81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121
... - _Philippe Deléham_, Jun 06 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E10, pp. 317-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039966 (characteristic function).
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 3 of array A104257.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
See also A000452.

Programs

  • Haskell
    a005836 n = a005836_list !! (n-1)
    a005836_list = filter ((== 1) . a039966) [0..]
    -- Reinhard Zumkeller, Jun 09 2012, Sep 29 2011
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 3
        end
    r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
  • Maple
    t := (j, n) -> add(binomial(n,k)^j, k=0..n):
    for i from 1 to 400 do
        if(t(4,i) mod 3 <>0) then print(i) fi
    od; # Gary Detlefs, Nov 28 2011
    # alternative Maple program:
    a:= proc(n) option remember: local k, m:
    if n=1 then 0 elif n=2 then 1 elif n>2 then k:=floor(log[2](n-1)): m:=n-2^k: procname(m)+3^k: fi: end proc:
    seq(a(n), n=1.. 20); # Paul Weisenhorn, Mar 22 2020
    # third Maple program:
    a:= n-> `if`(n=1, 0, irem(n-1, 2, 'q')+3*a(q+1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    Table[FromDigits[IntegerDigits[k, 2], 3], {k, 60}]
    Select[Range[0, 400], DigitCount[#, 3, 2] == 0 &] (* Harvey P. Dale, Jan 04 2012 *)
    Join[{0}, Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 57}]]] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
    FromDigits[#,3]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 10 2019 *)
  • PARI
    A=vector(100);for(n=2,#A,A[n]=if(n%2,3*A[n\2+1],A[n-1]+1));A \\ Charles R Greathouse IV, Jul 24 2012
    
  • PARI
    is(n)=while(n,if(n%3>1,return(0));n\=3);1 \\ Charles R Greathouse IV, Mar 07 2013
    
  • PARI
    a(n) = fromdigits(binary(n-1),3);  \\ Gheorghe Coserea, Jun 15 2018
    
  • Python
    def A005836(n):
        return int(format(n-1,'b'),3) # Chai Wah Wu, Jan 04 2015
    

Formula

a(n) = A005823(n)/2 = A003278(n)-1 = A033159(n)-2 = A033162(n)-3.
Numbers n such that the coefficient of x^n is > 0 in prod (k >= 0, 1 + x^(3^k)). - Benoit Cloitre, Jul 29 2003
a(n+1) = Sum_{k=0..m} b(k)* 3^k and n = Sum( b(k)* 2^k ).
a(2n+1) = 3a(n+1), a(2n+2) = a(2n+1) + 1, a(0) = 0.
a(n+1) = 3*a(floor(n/2)) + n - 2*floor(n/2). - Ralf Stephan, Apr 27 2003
G.f.: (x/(1-x)) * Sum_{k>=0} 3^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = Sum_{k = 1..n-1} (1 + 3^A007814(k)) / 2. - Philippe Deléham, Jul 09 2005
From Reinhard Zumkeller, Mar 02 2008: (Start)
A081603(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n)+1, a(n)+1) where f(x, y) = if x < 3 and x <> 2 then y else if x mod 3 = 2 then f(y+1, y+1) else f(floor(x/3), y). (End)
With offset a(0) = 0: a(n) = Sum_{k>=0} A030308(n,k)*3^k. - Philippe Deléham, Oct 15 2011
a(2^n) = A003462(n). - Philippe Deléham, Jun 06 2015
We have liminf_{n->infinity} a(n)/n^(log(3)/log(2)) = 1/2 and limsup_{n->infinity} a(n)/n^(log(3)/log(2)) = 1. - Gheorghe Coserea, Sep 13 2015
a(2^k+m) = a(m) + 3^k with 1 <= m <= 2^k and 1 <= k, a(1)=0, a(2)=1. - Paul Weisenhorn, Mar 22 2020
Sum_{n>=2} 1/a(n) = 2.682853110966175430853916904584699374821677091415714815171756609672281184705... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
A065361(a(n)) = n-1. - Rémy Sigrist, Feb 06 2023
a(n) ≍ n^k, where k = log 3/log 2 = 1.5849625007. (I believe the constant varies from 1/2 to 1.) - Charles R Greathouse IV, Mar 29 2024

Extensions

Offset corrected by N. J. A. Sloane, Mar 02 2008
Edited by the Associate Editors of the OEIS, Apr 07 2009

A007094 Numbers in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111
Offset: 0

Views

Author

Keywords

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057104; A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007095 (base 9).

Programs

  • Haskell
    a007094 0 = 0
    a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
    -- Reinhard Zumkeller, Aug 29 2013
    
  • Maple
    A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,8): return op(convert(l,base,10,10^nops(l))): end: seq(A007094(n), n=0..66); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
  • PARI
    a(n)=if(n<1,0,if(n%8,a(n-1)+1,10*a(n/8)))
    
  • PARI
    apply( A007094(n)=fromdigits(digits(n,8)), [0..77]) \\ M. F. Hasler, Nov 18 2019
    
  • Python
    def a(n): return int(oct(n)[2:])
    print([a(n) for n in range(74)]) # Michael S. Branicky, Jun 28 2021

Formula

a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - Robert Israel, Aug 03 2014

A007093 Numbers in base 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 115, 116, 120
Offset: 0

Views

Author

Keywords

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 67.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007093 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,7): return op(convert(l,base,10,10^nops(l))): end: seq(A007093(n),n=0..63); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 7]], {n, 0, 66}]
  • PARI
    a(n)=if(n<1,0,if(n%7,a(n-1)+1,10*a(n/7)))
    
  • PARI
    a(n) = fromdigits(digits(n, 7)); \\ Michel Marcus, Aug 12 2018

Formula

a(0) = 0, a(n) = 10*a(n/7) if n==0 (mod 7), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A007092 Numbers in base 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 140, 141, 142, 143, 144, 145
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digits > 5. - Karol Bacik, Sep 25 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007093 (base 7), A007094 (base 8), A007095 (base 9).

Programs

  • Haskell
    a007092 0 = 0
    a007092 n = 10 * a007092 n' + m where (n', m) = divMod n 6
    -- Reinhard Zumkeller, Mar 06 2015
  • Maple
    A007092 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,6): return op(convert(l,base,10,10^nops(l))): end: seq(A007092(n),n=0..59); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 6]], {n, 0, 65}]
  • PARI
    a(n)=if(n%6,a(n-1)+1,if(n,10*a(n/6),0))  \\ corrected by Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    a(n)=n=digits(n,6);n[1]=Str(n[1]);eval(concat(n)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    apply( A007092(n)=fromdigits(digits(n, 6)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    

Formula

a(0)=0, a(n) = 10*a(n/6) if n==0 (mod 6), and a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = Sum{d(i)*10^i: i=0,1,...,m}, where Sum{d(i)*6^i: i=1,2,...,m} = n, and d(i) in {0,1,...,5}. - Karol Bacik, Sep 25 2012
Showing 1-10 of 354 results. Next