cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 191 results. Next

A037473 Duplicate of A007092.

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 130, 131, 132
Offset: 1

Views

Author

Keywords

Formula

A007092 \ {0}. [From R. J. Mathar, Oct 20 2008]

A007089 Numbers in base 3.

Original entry on oeis.org

0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212, 220, 221, 222, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1200, 1201, 1202, 1210, 1211
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digit > 2. Thus nonnegative integers in base 10 whose quadrupling by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.3 Positional Notation, p. 47.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007089 0 = 0
    a007089 n = 10 * a007089 n' + m where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Feb 19 2012
    
  • Maple
    A007089 := proc(n) option remember;
    if n <= 0 then 0
    else
      if (n mod 3) = 0 then 10*procname(n/3) else procname(n-1) + 1 fi
    fi end:
    [seq(A007089(n), n=0..729)]; # - N. J. A. Sloane, Mar 09 2019
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 3]], {n, 0, 50}]
  • PARI
    a(n)=if(n<1,0,if(n%3,a(n-1)+1,10*a(n/3)))
    
  • PARI
    a(n)=fromdigits(digits(n,3)) \\ Charles R Greathouse IV, Jan 08 2017
    
  • Python
    def A007089(n):
      n,s = divmod(n,3); t = 1
      while n: n,r = divmod(n,3); t *= 10; s += r*t
      return s # M. F. Hasler, Feb 15 2023

Formula

a(0)=0, a(n) = 10*a(n/3) if n==0 (mod 3), a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = 10*a(floor(n/3)) + (n mod 3) if n > 0, a(0) = 0. - M. F. Hasler, Feb 15 2023

Extensions

More terms from James Sellers, May 01 2000

A007090 Numbers in base 4.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digit > 3. Thus nonnegative integers in base 10 whose tripling (trebling) by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009
Interpreted in base 10: a(x)+a(y) = a(z) => x+y = z. The converse is not true in general. - Karol Bacik, Sep 27 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007608, A000042, A007088 (base 2), A007089 (base 3), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8), A007095 (base 9), A193890, A107715.

Programs

  • Haskell
    a007090 0 = 0
    a007090 n = 10 * a007090 n' + m where (n', m) = divMod n 4
    -- Reinhard Zumkeller, Apr 08 2013, Aug 11 2011
  • Maple
    A007090 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,4): return op(convert(l,base,10,10^nops(l))): end: seq(A007090(n),n=0..54); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 4]], {n, 0, 60}]
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,10*a(n/4)))
    
  • PARI
    A007090(n)=sum(i=1,#n=digits(n,4),n[i]*10^(#n-i)) \\ M. F. Hasler, Jul 25 2015 (Corrected by Jinyuan Wang, Oct 02 2019)
    
  • PARI
    apply( A007090(n)=fromdigits(digits(n,4)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    

Formula

a(n) = Sum_{d(i)*10^i: i=0, 1, ..., m}, where Sum_{d(i)*4^i: i=0, 1, ..., m} is the base 4 representation of n.
a(0) = 0, a(n) = 10*a(n/4) if n==0 (mod 4), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A007091 Numbers in base 5.

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130, 131, 132, 133, 134, 140, 141, 142, 143, 144, 200, 201, 202, 203, 204, 210, 211, 212, 213, 214, 220, 221, 222, 223, 224, 230
Offset: 0

Views

Author

Keywords

Comments

From Rick L. Shepherd, Jun 25 2009: (Start)
Nonnegative integers with no decimal digit > 4.
Thus nonnegative integers in base 10 whose doubling by normal addition or multiplication requires no carry operation. (End)
It appears that this sequence corresponds to the numbers n for which twice the sum of digits of n is the sum of digits of 2*n. - Rémy Sigrist, Nov 22 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007092 (base 6), A007093 (base 7), A007094 (base 8), A007095 (base 9).

Programs

  • Maple
    A007091 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,5): return op(convert(l,base,10,10^nops(l))): end: seq(A007091(n),n=0..58); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 5]], {n, 0, 60}]
  • PARI
    a(n)=if(n<1,0,if(n%5,a(n-1)+1,10*a(n/5)))
    
  • PARI
    apply( A007091(n)=fromdigits(digits(n,5)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    
  • Python
    from gmpy2 import digits
    def A007091(n): return int(digits(n,5)) # Chai Wah Wu, Dec 26 2021

Formula

a(0)=0 a(n)=10*a(n/5) if n==0 (mod 5) a(n)=a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = n + 1/2*Sum_{k >= 1} 10^k*floor(n/5^k). Cf. A037454, A037462 and A102491. - Peter Bala, Dec 01 2016

A007095 Numbers in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84
Offset: 0

Views

Author

Keywords

Comments

Also numbers without 9 as a digit.
Complement of A011539: A102683(a(n)) = 0; A068505(a(n)) != a(n)). - Reinhard Zumkeller, Dec 29 2011

References

  • Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8); A057104, A037479.
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8).
Cf. A082838.

Programs

  • Haskell
    a007095 = f . subtract 1 where
       f 0 = 0
       f v = 10 * f w + r   where (w, r) = divMod v 9
    -- Reinhard Zumkeller, Oct 07 2014, Dec 29 2011
    
  • Magma
    [ n: n in [0..74] | not 9 in Intseq(n) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    A007095 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,9): return op(convert(l,base,10,10^nops(l))): end: seq(A007095(n),n=0..67); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 9]], {n, 0, 75}]
  • PARI
    a(n)=if(n<1,0,if(n%9,a(n-1)+1,10*a(n/9)))
    
  • PARI
    A007095(n)=fromdigits(digits(n, 9)) \\ Michel Marcus, Dec 29 2018
    
  • Python
    # and others: see OEIS Wiki page (cf. LINKS).
    
  • Python
    from gmpy2 import digits
    def A007095(n): return int(digits(n,9)) # Chai Wah Wu, May 06 2025
  • sh
    seq 0 1000 | grep -v 9; # Joerg Arndt, May 29 2011
    

Formula

a(0) = 0, a(n) = 10*a(n/9) if n==0 (mod 9), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Sum_{n>1} 1/a(n) = A082838 = 22.92067... (Kempner series). - Bernard Schott, Dec 29 2018; edited by M. F. Hasler, Jan 13 2020

A007094 Numbers in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111
Offset: 0

Views

Author

Keywords

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057104; A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007095 (base 9).

Programs

  • Haskell
    a007094 0 = 0
    a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
    -- Reinhard Zumkeller, Aug 29 2013
    
  • Maple
    A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,8): return op(convert(l,base,10,10^nops(l))): end: seq(A007094(n), n=0..66); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
  • PARI
    a(n)=if(n<1,0,if(n%8,a(n-1)+1,10*a(n/8)))
    
  • PARI
    apply( A007094(n)=fromdigits(digits(n,8)), [0..77]) \\ M. F. Hasler, Nov 18 2019
    
  • Python
    def a(n): return int(oct(n)[2:])
    print([a(n) for n in range(74)]) # Michael S. Branicky, Jun 28 2021

Formula

a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - Robert Israel, Aug 03 2014

A007093 Numbers in base 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 115, 116, 120
Offset: 0

Views

Author

Keywords

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 67.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007093 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,7): return op(convert(l,base,10,10^nops(l))): end: seq(A007093(n),n=0..63); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 7]], {n, 0, 66}]
  • PARI
    a(n)=if(n<1,0,if(n%7,a(n-1)+1,10*a(n/7)))
    
  • PARI
    a(n) = fromdigits(digits(n, 7)); \\ Michel Marcus, Aug 12 2018

Formula

a(0) = 0, a(n) = 10*a(n/7) if n==0 (mod 7), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A000042 Unary representation of natural numbers.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 1

Views

Author

Keywords

Comments

Or, numbers written in base 1.
If p is a prime > 5 then d_{a(p)} == 1 (mod p) where d_{a(p)} is a divisor of a(p). This also gives an alternate elementary proof of the infinitude of prime numbers by the fact that for every prime p there exists at least one prime of the form k*p + 1. - Amarnath Murthy, Oct 05 2002
11 = 1*9 + 2; 111 = 12*9 + 3; 1111 = 123*9 + 4; 11111 = 1234*9 + 5; 111111 = 12345*9 + 6; 1111111 = 123456*9 + 7; 11111111 = 1234567*9 + 8; 111111111 = 12345678*9 + 9. - Vincenzo Librandi, Jul 18 2010

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 57-58.
  • K. G. Kroeber, Mathematik der Palindrome; p. 348; 2003; ISBN 3 499 615762; Rowohlt Verlag; Germany.
  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 276.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    A000042 n = (10^n-1) `div` 9 -- James Spahlinger, Oct 08 2012
    (Common Lisp) (defun a000042 (n) (truncate (expt 10 n) 9)) ; James Spahlinger, Oct 12 2012
    
  • Magma
    [(10^n - 1)/9: n in [1..20]]; // G. C. Greubel, Nov 04 2018
    
  • Maple
    a:= n-> parse(cat(1$n)):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 23 2018
  • Mathematica
    Table[(10^n - 1)/9, {n, 1, 18}]
    FromDigits/@Table[PadLeft[{},n,1],{n,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,(10^n-1)/9)
    
  • Python
    def a(n): return int("1"*n) # Michael S. Branicky, Jan 01 2021
  • Sage
    [gaussian_binomial(n, 1, 10) for n in range(1, 19)]  # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = (10^n - 1)/9.
G.f.: 1/((1-x)*(1-10*x)).
Binomial transform of A003952. - Paul Barry, Jan 29 2004
From Paul Barry, Aug 24 2004: (Start)
a(n) = 10*a(n-1) + 1, n > 1, a(1)=1. [Offset 1.]
a(n) = Sum_{k=0..n} binomial(n+1, k+1)*9^k. [Offset 0.] (End)
a(2n) - 2*a(n) = (3*a(n))^2. - Amarnath Murthy, Jul 21 2003
a(n) is the binary representation of the n-th Mersenne number (A000225). - Ross La Haye, Sep 13 2003
The Hankel transform of this sequence is [1,-10,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (exp(10*x) - exp(x))/9. - G. C. Greubel, Nov 04 2018
a(n) = 11*a(n-1) - 10*a(n-2). - Wesley Ivan Hurt, May 28 2021
a(n+m-2) = a(m)*a(n-1) - (a(m)-1)*a(n-2), n>1, m>0. - Matej Veselovac, Jun 07 2021
Sum_{n>=1} 1/a(n) = A065444. - Stefano Spezia, Jul 30 2024

Extensions

More terms from Paul Barry, Jan 29 2004

A084984 Numbers containing no prime digits.

Original entry on oeis.org

0, 1, 4, 6, 8, 9, 10, 11, 14, 16, 18, 19, 40, 41, 44, 46, 48, 49, 60, 61, 64, 66, 68, 69, 80, 81, 84, 86, 88, 89, 90, 91, 94, 96, 98, 99, 100, 101, 104, 106, 108, 109, 110, 111, 114, 116, 118, 119, 140, 141, 144, 146, 148, 149, 160, 161, 164, 166, 168, 169
Offset: 1

Views

Author

Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 27 2003

Keywords

Comments

Complement of A118950. - Reinhard Zumkeller, Jul 19 2011
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,4,6,8,9 for k=0..5. - Hieronymus Fischer, May 30 2012

Examples

			166 has digits 1 and 6 and they are nonprime digits.
a(1000) = 8686.
a(10^4) = 118186
a(10^5) = 4090986.
a(10^6) = 66466686.
		

Crossrefs

Programs

  • Haskell
    a084984 n = a084984_list !! (n-1)
    a084984_list = filter (not . any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Magma
    [n: n in [0..169] | forall{d: d in [2,3,5,7] | d notin Set(Intseq(n))}];  // Bruno Berselli, Jul 19 2011
    
  • Mathematica
    npdQ[n_]:=And@@Table[FreeQ[IntegerDigits[n],i],{i,{2,3,5,7}}]; Select[ Range[ 0,200],npdQ] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    is(n)=isprime(eval(Vec(Str(n))))==0 \\ Charles R Greathouse IV, Feb 20 2012
    
  • PARI
    my(table=[0,1,4,6,8,9]); \
    a(n) = fromdigits([table[d+1] |d<-digits(n-1,6)]); \\ Kevin Ryde, May 27 2025

Formula

A193238(a(n)) = 0. - Reinhard Zumkeller, Jul 19 2011
a(n) >> n^1.285. - Charles R Greathouse IV, Feb 20 2012
From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = ((2*b_m(n)+1) mod 10 + floor((b_m(n)+4)/5) - floor((b_m(n)+1)/5))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 12 + floor(b_j(n)/6) - floor((b_j(n)+1)/6) + floor((b_j(n)+4)/6) - floor((b_j(n)+5)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
Special values:
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 4*10^n.
a(3*6^n+1) = 6*10^n.
a(4*6^n+1) = 8*10^n.
a(5*6^n+1) = 9*10^n.
a(2*6^n) = 2*10^n - 1.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0.
Inequalities:
a(n) < 10^log_6(n-1) for 6^k+10.
a(n) > 10^log_6(n-1) for 2*6^k=0.
a(n) <= 4*10^(log_6(n-1)-log_6(2)) = 1.641372618*10^(log_6(n-1)), equality holds for n=2*6^k+1, k>=0.
a(n) > 2*10^(log_6(n-1)-log_6(2)) = 0.820686309*10^(log_6(n-1)).
a(n) = A007092(n-1) iff the digits of A007092(n-1) are 0 or 1, a(n)>A007092(n-1), else.
a(n) >= A202267(n), equality holds if the representation of n-1 as a base-6 number has only digits 0 or 1.
Lower and upper limits:
lim inf a(n)/10^log_6(n) = 2/10^log_6(2) = 0.820686309, for n --> inf.
lim sup a(n)/10^log_6(n) = 4/10^log_6(2) = 1.641372618, for n --> inf.
where 10^log_6(n) = n^1.2850972089...
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j * (1-x^6^j)*((1+x^6^j)^4 + 4(1+2x^6^j) * x^(3*6^j))/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + 3*h_(6,2)(x) + 2*h_(6,3)(x) + 2*h_(6,4)(x) + h_(6,5)(x) - 9*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 3.614028405471074989720026361356036456697082276983705341077940360653303099111... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

0 added by N. J. A. Sloane, Feb 02 2009
100 added by Arkadiusz Wesolowski, Mar 10 2011
Examples for n>=10^3 added by Hieronymus Fischer, May 30 2012

A100969 Integers that are Rhonda numbers to base 6.

Original entry on oeis.org

855, 1029, 3813, 5577, 7040, 7304, 15104, 19136, 35350, 36992, 41031, 42009, 60368, 65536, 67821, 76880, 84525, 90601, 122831, 131175, 154570, 162565, 184009, 184585, 196504, 217021, 219830, 222200, 252161, 256041, 268677, 353115, 355737, 357568, 367517, 371229, 388367
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 24 2004

Keywords

Comments

See sequence A099542 for definition of Rhonda numbers and links.

Examples

			The product of the base 6 digits of 507500 is 1*4*5*1*3*3*1*2=360 and the sum of the prime factors of 507500 is 2*2+4*5+7+29=60 and 360=6*60.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255736 (base 30), A255731 (base 60), see also A255872.
Cf. A001414, A027746, A007092, subsequence of A248910.
Column k=2 of A291925.

Programs

  • Haskell
    a100969 n = a100969_list !! (n-1)
    a100969_list = filter (rhonda 6) a248910_list
    -- Function rhonda as in A099542.
    -- Reinhard Zumkeller, Mar 08 2015
  • Mathematica
    A100969Q[k_] := Times @@ IntegerDigits[k, 6] == 6*Total[Times @@@ FactorInteger[k]];
    Select[Range[400000], A100969Q] (* Paolo Xausa, Jul 01 2025 *)
Showing 1-10 of 191 results. Next