A007095 Numbers in base 9.
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84
Offset: 0
References
- Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 34.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- M. F. Hasler, Numbers avoiding certain digits, OEIS wiki, Jan 12 2020
- Robert G. Wilson v, Letter to N. J. A. Sloane, Sep. 1992
- Index entries for 10-automatic sequences.
Crossrefs
Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8); A057104, A037479.
Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8).
Cf. A082838.
Programs
-
Haskell
a007095 = f . subtract 1 where f 0 = 0 f v = 10 * f w + r where (w, r) = divMod v 9 -- Reinhard Zumkeller, Oct 07 2014, Dec 29 2011
-
Magma
[ n: n in [0..74] | not 9 in Intseq(n) ]; // Bruno Berselli, May 28 2011
-
Maple
A007095 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,9): return op(convert(l,base,10,10^nops(l))): end: seq(A007095(n),n=0..67); # Nathaniel Johnston, May 06 2011
-
Mathematica
Table[ FromDigits[ IntegerDigits[n, 9]], {n, 0, 75}]
-
PARI
a(n)=if(n<1,0,if(n%9,a(n-1)+1,10*a(n/9)))
-
PARI
A007095(n)=fromdigits(digits(n, 9)) \\ Michel Marcus, Dec 29 2018
-
Python
# and others: see OEIS Wiki page (cf. LINKS).
-
Python
from gmpy2 import digits def A007095(n): return int(digits(n,9)) # Chai Wah Wu, May 06 2025
-
sh
seq 0 1000 | grep -v 9; # Joerg Arndt, May 29 2011
Formula
a(0) = 0, a(n) = 10*a(n/9) if n==0 (mod 9), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
Sum_{n>1} 1/a(n) = A082838 = 22.92067... (Kempner series). - Bernard Schott, Dec 29 2018; edited by M. F. Hasler, Jan 13 2020
Comments