cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007153 Dedekind numbers: number of monotone Boolean functions or antichains of subsets of an n-set containing at least one nonempty set.

Original entry on oeis.org

0, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 56130437228687557907786, 286386577668298411128469151667598498812364
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of elements of the free distributive lattice with n generators.
A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}.
The count of antichains excludes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
The number of continuous functions f : R^n->R with f(x_1,..,x_n) in {x_1,..,x_n}. - Jan Fricke, Feb 12 2004
From Robert FERREOL, Mar 23 2009: (Start)
a(n) is also the number of reduced normal conjunctive forms with n variables without negation.
For example the 18 forms for n=3 are :
a
b
c
a or b
a or c
b or c
a or b or c
a and b
a and c
b and c
a and (b or c)
b and (a or c)
c and (a or b)
(a or b) and (a or c)
(b or a) and (b or c)
(c or a) and (c or b)
a and b and c
(a or b) and (a or c) and (b or c)
(End)

Examples

			a(2)=4 from the antichains {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • J. L. Arocha, (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • R. Balbes and P. Dwinger, Distributive Lattices, Univ. Missouri Press, 1974, see p. 97. - N. J. A. Sloane, Aug 15 2010
  • J. Berman, "Free spectra of 3-element algebras", in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Equals A000372 - 2 and A014466 - 1.. Cf. A003182.

Extensions

Last term from D. H. Wiedemann, personal communication
Additional comments from Michael Somos, Jun 10 2002
Term a(9) (using A000372) from Joerg Arndt, Apr 07 2023