cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000372 Dedekind numbers or Dedekind's problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families.

Original entry on oeis.org

2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing function from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
a(n) is also equal to the number of upsets of an n-set S. A set U of subsets of S is an upset if whenever A is in U and B is a superset of A then B is in U. - W. Edwin Clark, Nov 06 2003
Also the number of simple games with n players in minimal winning form. - Fabián Riquelme, May 29 2011
The unlabeled case is A003182. - Gus Wiseman, Feb 20 2019
From Amiram Eldar, May 28 2021 and Michel Marcus, Apr 07 2023: (Start)
The terms were first calculated by:
a(0)-a(4) - Dedekind (1897)
a(5) - Church (1940)
a(6) - Ward (1946)
a(7) - Church (1965, verified by Berman and Kohler, 1976)
a(8) - Wiedemann (1991)
a(9) - Jäkel (2023)
a(9) - independently computed by Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass, and Christian Plessl (2023)
(End)

Examples

			a(2)=6 from the antichains {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 2 through a(3) = 20 antichains:
  {}    {}     {}        {}
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Ian Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, Antichains in ordered sets [in Spanish], Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico, Vol. 27 (1987), pp. 1-21.
  • Joel Berman and Peter Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, Vol. 121 (1976), pp. 103-124.
  • Garrett Birkhoff, Lattice Theory, American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • Michael A. Harrison, Introduction to Switching and Automata Theory, McGraw Hill, NY, 1965, p. 188.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • A. D. Korshunov, The number of monotone Boolean functions, Problemy Kibernet, No. 38, (1981), 5-108, 272. MR0640855 (83h:06013)
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, in D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971, pp. 173-181.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, pp. 38 and 214.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables in an n-variable boolean algebra. In preparation.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n]],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    Table[Total[Boole[Table[UnateQ[BooleanFunction[k, n]], {k, 0, 2^(2^n) - 1}]]], {n, 0, 4}] (* Eric W. Weisstein, Jun 27 2023 *)

Formula

The asymptotics can be found in the Korshunov paper. - Boris Bukh, Nov 07 2003
a(n) = Sum_{k=1..n} binomial(n,k)*A006126(k) + 2, i.e., this sequence is the inverse binomial transform of A006126, plus 2. E.g., a(3) = 3*1 + 3*2 + 1*9 + 2 = 20. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
From J. M. Aranda, Jun 12 2021: (Start)
a(n) = A132581(2^n) = A132581(2^n-2^m) + A132581(2^n-2^(n-m)) for n >= m >= 0.
a(n) = A132582(3*2^n -1) for n >= 0.
(End)

Extensions

a(8) from D. H. Wiedemann, personal communication, Nov 03 1990
Additional comments from Michael Somos, Jun 10 2002
a(9) from C. Jäkel added by Michel Marcus, Apr 04 2023

A014466 Dedekind numbers: monotone Boolean functions, or nonempty antichains of subsets of an n-set.

Original entry on oeis.org

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787, 286386577668298411128469151667598498812365
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the antichain consisting of only the empty set, but excludes the empty antichain.
Also counts bases of hereditary systems.
Also antichains of nonempty subsets of an n-set. The unlabeled case is A306505. The spanning case is A307249. This sequence has a similar description to A305000 except that the singletons must be disjoint from the other edges. - Gus Wiseman, Feb 20 2019
a(n) is the total number of hierarchical log-linear models on n labeled factors (categorical variables). See Wickramasinghe (2008) and Nardi and Rinaldo (2012). - Petros Hadjicostas, Apr 08 2020
From Lorenzo Sauras Altuzarra, Apr 02 2023: (Start)
a(n) is the number of labeled abstract simplicial complexes on n vertices.
A058673(n) <= a(n) <= A058891(n+1). (End)

Examples

			a(2)=5 from the antichains {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 1 through a(3) = 19 antichains:
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start)
The 19 sets E such that ({1, 2, 3}, E) is an abstract simplicial complex:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1}, {2}}
  {{1}, {3}}
  {{2}, {3}}
  {{1}, {2}, {3}}
  {{1}, {2}, {1, 2}}
  {{1}, {3}, {1, 3}}
  {{2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}}
  {{1}, {2}, {3}, {1, 3}}
  {{1}, {2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}}
  {{1}, {2}, {3}, {1, 2}, {2, 3}}
  {{1}, {2}, {3}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21 (1987).
  • J. Berman, "Free spectra of 3-element algebras," in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • J. Dezert, Fondations pour une nouvelle théorie du raisonnement plausible et paradoxal (la DSmT), Tech. Rep. 1/06769 DTIM, ONERA, Paris, page 33, January 2003.
  • J. Dezert, F. Smarandache, On the generating of hyper-powersets for the DSmT, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia, 2003.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Equals A000372 - 1 = A007153 + 1.
Cf. A003182, A005465, A006126, A006602, A058673 (labeled matroids), A058891 (labeled hypergraphs), A261005, A293606, A304996, A305000, A306505, A307249, A317674, A319721, A320449, A321679.

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A@372 - 1 (* Jean-François Alcover, Jan 07 2020 *)

Formula

Binomial transform of A307249 (or A006126 if its zeroth term is 1). - Gus Wiseman, Feb 20 2019
a(n) >= A005465(n) (because the hierarchical log-linear models on n factors always include all the conditional independence models considered by I. J. Good in A005465). - Petros Hadjicostas, Apr 24 2020

Extensions

Last term from D. H. Wiedemann, personal communication.
Additional comments from Michael Somos, Jun 10 2002
Term a(9) (using A000372) from Joerg Arndt, Apr 07 2023

A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0

Views

Author

Keywords

Comments

NP-equivalence classes of unate Boolean functions of n or fewer variables.
Also the number of simple games with n players in minimal winning form up to isomorphism. - Fabián Riquelme, Mar 13 2018
The labeled case is A000372. - Gus Wiseman, Feb 23 2019
First differs from A348260(n + 1) at a(5) = 210, A348260(6) = 233. - Gus Wiseman, Nov 28 2021
Pawelski & Szepietowski show that a(n) = A001206(n) (mod 2) and that a(9) = 6 (mod 210). - Charles R Greathouse IV, Feb 16 2023

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{1,2}}    {{1,2}}
               {{1},{2}}  {{1},{2}}
                          {{1,2,3}}
                          {{1},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. H. Wiedemann, personal communication.

Crossrefs

Formula

a(n) = A306505(n) + 1. - Gus Wiseman, Jul 02 2019

Extensions

a(7) added by Timothy Yusun, Sep 27 2012
a(8) from Pawelski added by Michel Marcus, Sep 01 2021
a(9) from Pawelski added by Michel Marcus, May 11 2023

A120338 Number of disconnected antichain covers of a labeled n-set.

Original entry on oeis.org

0, 1, 4, 30, 546, 41334, 54502904, 19317020441804
Offset: 1

Views

Author

Greg Huber, Jun 22 2006

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. - Gus Wiseman, Sep 26 2019

Examples

			a(3)=4: the four disconnected covers are {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}} and {{1},{2},{3}}.
		

Crossrefs

Column k = 0 of A327351, if we assume a(0) = 1.
Column k = 0 of A327357, if we assume a(0) = 1.
The non-covering version is A327354.
The unlabeled version is A327426.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&&Length[csm[#]]!=1&]],{n,4}] (* Gus Wiseman, Sep 26 2019 *)

A302250 The number of antichains in the lattice of set partitions of an n-element set.

Original entry on oeis.org

2, 3, 10, 347, 79814832
Offset: 1

Views

Author

John Machacek, Apr 04 2018

Keywords

Comments

Computing terms in this sequence is analogous to Dedekind's problem which asks for the number of antichains in the Boolean algebra.
This count includes the empty antichain consisting of no set partitions.

Examples

			For n = 3 the a(3) = 10 antichains are:
  {}
  {1/2/3}
  {1/23}
  {12/3}
  {13/2}
  {1/23, 12/3}
  {1/23, 13/2}
  {12/3, 13/2}
  {1/23, 12/3, 13/2}
  {123}.
Here we have used the usual shorthand notation for set partitions where 1/23 denotes {{1}, {2,3}}.
		

Crossrefs

Equals A302251 + 1, Cf. A000372, A007153, A003182, A014466.

Programs

  • Sage
    [Posets.SetPartitions(n).antichains().cardinality() for n in range(4)]

A374824 Boolean-Boolean Quilt Numbers: Triangular array T(n,k) of the number of ASM quilts of type B_n X B_k, where B_n is the Boolean lattice of subsets of an n-set ordered by inclusion.

Original entry on oeis.org

1, 4, 16, 18, 2309, 2406862, 166, 4001278
Offset: 1

Views

Author

Sara Billey and Matjaz Konvalinka, Jul 21 2024

Keywords

Comments

For k=1, these numbers are the Dedekind numbers given in A007153.

Examples

			Triangle begins:
    1;
    4,      16;
   18,    2309, 2406862;
  166, 4001278,     ..., ...;
  ...
		

Crossrefs

A374819 Triangle read by rows: T(n,k) is the number of functions on the Boolean lattice B_n satisfying f({}) =0, f([n])=k, and the Boolean growth rule: f(J union {i})-f(J) in {0,1} for all subsets J of [n]={1, ..., n} and all i in [n]\J, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 18, 18, 1, 1, 166, 656, 166, 1, 1, 7579, 189967, 189967, 7579, 1, 1, 7828352
Offset: 0

Views

Author

Sara Billey and Matjaz Konvalinka, Jul 25 2024

Keywords

Comments

For k=1, these numbers are the Dedekind numbers A007153 counting the number of monotone Boolean functions or equivalently antichains of subsets of an n-set containing at least one nonempty set.

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   18,     18,      1;
  1,  166,    656,    166,    1;
  1, 7579, 189967, 189967, 7579, 1;
  ...
		

Crossrefs

A374820 Boolean-Chain Quilt Numbers: Square table of the number of ASM quilts of type B_n X C_k read down antidiagonals, where B_n is the Boolean lattice on an n-set and C_k is a chain of length k with k+1 elements.

Original entry on oeis.org

1, 2, 4, 3, 4, 18, 4, 17, 199, 166, 5, 46, 199, 47000, 7579, 6, 100, 3252, 3813042, 410131245, 7828352
Offset: 1

Views

Author

Sara Billey and Matjaz Konvalinka, Jul 21 2024

Keywords

Comments

For k=1, these numbers are the Dedekind numbers A007153 counting the number of monotone Boolean functions or antichains of subsets of an n-set containing at least one nonempty set.
For k=2, these numbers are Antichain-Boolean numbers, see A374821.
These numbers are given by a polynomial in k for fixed n when k>=n.

Examples

			Square array begins:
        1,         2,       3,    4,   5,  6, ...
        4,         4,      17,   46, 100, ...
       18,       199,     199, 3252, ...
      166,     47000, 3813042, ...
     7579, 410131245, ...
  7828352, ...
		

Crossrefs

A269699 Irregular triangle read by rows: T(n, k) is the number of k-element proper ideals of the n-dimensional Boolean lattice, with 0 < k < 2^n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 10, 13, 18, 19, 24, 19, 18, 13, 10, 6, 4, 1, 1, 5, 10, 20, 35, 61, 95, 155, 215, 310, 387, 470, 530, 580, 605, 621, 605, 580, 530, 470, 387, 310, 215, 155, 95, 61, 35, 20, 10, 5, 1, 1, 6, 15, 35, 75, 156, 306, 605, 1110, 2045, 3512, 5913, 9415
Offset: 1

Views

Author

Danny Rorabaugh, Mar 03 2016

Keywords

Comments

The set of maximal elements of an ideal is an antichain; conversely, the down-set of a nonempty antichain is an ideal. The down-set of the top element of the n-dimensional Boolean lattice contains all 2^n elements of the lattice, and thus is not a proper ideal.
Empirically, the rows are unimodal.
By the Markowsky paper, T(n, k) = T(n, 2^n - k).
Also, T(n,k) is the number of n-dimensional Ferrers diagrams with k nodes (i.e., (n-1)-dimensional partitions) that fit into an n-dimensional hypercube of side 2 (i.e., a Boolean or binary hupercube). T(n, k) = T(n, 2^n - k) follows from the map that takes a Ferrers diagram to its complement in the box. - Suresh Govindarajan, Apr 10 2016

Examples

			For row n = 3, the k-element proper ideals are the down-sets of the following antichains:
T(3, 1) = 1: [{}];
T(3, 2) = 3: [{0}], [{1}], [{2}];
T(3, 3) = 3: [{0},{1}], [{0},{2}], [{1},{2}];
T(3, 4) = 4: [{0,1}], [{0,2}], [{1,2}], [{0},{1},{2}];
T(3, 5) = 3: [{0,1},{2}], [{0,2},{1}], [{1,2},{0}];
T(3, 6) = 3: [{0,1},{0,2}], [{0,1},{1,2}], [{0,2},{1,2}];
T(3, 7) = 1: [{0,1},{0,2},{1,2}].
E.g., the 5-element down-set of [{0,1},{2}] is [{},{0},{1},{2},{0,1}].
The table begins:
n\k 1 2  3  4  5  6  7   8   9  10  11  12  13  14  15  16  17
1   1
2   1 2  1
3   1 3  3  4  3  3  1
4   1 4  6 10 13 18 19  24  19  18  13  10   6   4   1
5   1 5 10 20 35 61 95 155 215 310 387 470 530 580 605 621 605 ...
		

Crossrefs

Columns are: A000012 (k = 1), A000027 (k = 2), A000217 (k = 3), A000292 (k = 4), A095661 (k = 5).
Cf. A007153 (row sums), A007318, A059119.

Programs

  • Sage
    # Returns row n.
    def T(n):
      B = posets.BooleanLattice(n)
      t = [0]*(2^n + 1)
      for A in B.antichains():
        t[len(B.order_ideal(A))] += 1
      return t[1:-1]

A007154 Spectrum of the free Kleene algebra on n free variables.

Original entry on oeis.org

0, 4, 82, 43916, 160297985274
Offset: 0

Views

Author

Keywords

References

  • J. Berman, ``Free spectra of 3-element algebras,'' in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

Title improved by Sean A. Irvine, Nov 04 2017
Showing 1-10 of 19 results. Next