A160254
Expansion of x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)).
Original entry on oeis.org
1, 2, 4, 7, 13, 24, 44, 81, 151, 280, 525, 984, 1859, 3511, 6682, 12709, 24334, 46565, 89626, 172381, 333262, 643733, 1249147, 2421592, 4713715, 9165792, 17888456, 34873456, 68212220, 133269997, 261167821, 511211652, 1003436520, 1967293902
Offset: 1
-
gf : taylor(x*(2 - 3*x + x^2 - 4*x^3 + 3*x^4 - 2*x^5 + x*(1 - x - x^3)*sqrt((1 + 2*x)/(1 - 2*x)))/(2*(1 - 3*x + 3*x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 2*x^6)), x, 0, 100)$
makelist(ratcoef(gf, x, n), n, 1, 100); /* Franck Maminirina Ramaharo, Jan 15 2019 */
A199711
Triangular array: T(n,k) gives the number of numerical semigroups of genus n and multiplicity k, (n>=1, k>=2).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 3, 6, 7, 5, 1, 1, 3, 7, 10, 11, 6, 1, 1, 3, 9, 13, 17, 16, 7, 1, 1, 4, 11, 16, 27, 28, 22, 8, 1, 1, 4, 13, 22, 37, 44, 44, 29, 9, 1, 1, 4, 15, 24, 49, 64, 72, 66, 37, 10, 1, 1, 5, 18, 32, 66, 85, 116, 116, 95, 46, 11, 1
Offset: 1
Triangle begins
.n\k.|..2....3....4....5....6....7....8....9...10
= = = = = = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..1....1
..3..|..1....2....1
..4..|..1....2....3....1
..5..|..1....2....4....4....1
..6..|..1....3....6....7....5....1
..7..|..1....3....7...10...11....6....1
..8..|..1....3....9...13...17...16....7....1
..9..|..1....4...11...16...27...28...22....8....1
...
T(3,3) = 2: The two numerical semigroups of genus 3 and multiplicity 3 are S = N - {1,2,4} and S = N - {1,2,5}.
A198896
Number of Cohen-Macaulay modules (see Clark et al. for precise definition).
Original entry on oeis.org
1, 2, 5, 12, 26, 54, 114, 228, 449, 878, 1690
Offset: 0
- Sean Clark, Anton Preslicka, Josh Schwartz and Radoslav Zlatev, Some combinatorial conjectures on a family of toric ideals: A report from the MSRI 2011 Commutative Algebra graduate workshop.
A210581
Bras-Amorós number f_n for numerical semigroups of genus n.
Original entry on oeis.org
1, 2, 7, 23, 68, 200, 615, 1764, 5060, 14626, 41785, 117573, 332475, 933891, 2609832, 7278512
Offset: 0
A293176
Irregular triangle read by rows: T(n,k) = number of numerical semigroups of genus n with k even gaps.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 2, 6, 3, 1, 2, 7, 12, 1, 1, 2, 7, 19, 10, 1, 2, 7, 21, 32, 4, 1, 2, 7, 23, 51, 33, 1, 1, 2, 7, 23, 62, 91, 18, 1, 2, 7, 23, 65, 142, 98, 5, 1, 2, 7, 23, 68, 174, 257, 59, 1, 1, 2, 7, 23, 68, 192, 412, 271, 25, 1, 2, 7, 23, 68, 197, 514, 678, 197, 6
Offset: 0
Triangle begins:
1,
1,
1,1,
1,2,1,
1,2,4,
1,2,6,3,
1,2,7,12,1,
1,2,7,19,10,
1,2,7,21,32,4,
1,2,7,23,51,33,1,
1,2,7,23,62,91,18,
1,2,7,23,65,142,98,5,
1,2,7,23,68,174,257,59,1,
1,2,7,23,68,192,412,271,25,
1,2,7,23,68,197,514,678,197,6,
...
- M. Bernardini, Fernando Torres. "Counting numerical semigroups by genus and even gaps." Discrete Mathematics 340.12 (2017): 2853-2863. Also arXiv:1612.01212.
Showing 1-5 of 5 results.
Comments