A007334 Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, 10319560704, 275716983698, 8099130339328, 259492675781250, 9007199254740992, 336755653118801858, 13493281232954916864, 576882827135242335362, 26214400000000000000000
Offset: 2
Keywords
Examples
a(3)=2 because K_{3}/e consists of two vertices and two parallel edges, where each edge is a spanning tree.
References
- J. Oxley, Matroid Theory, Oxford University Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See p. 7.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563. (Annotated scanned copy)
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 19, 22.
- N. Eaton, W. Kook and L. Thoma, Monotonicity for complete graphs, preprint, 2003.
- Jean-Baptiste Priez and Aladin Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Dennis Walsh, Notes on acyclic functions
Crossrefs
The sequence is A058127(n, n-2) for n >= 2. - Peter Luschny, Apr 22 2009
Cf. A007830.
Programs
-
Mathematica
nn = 17; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[Exp[ tx]^2, {x, 0, nn}], x] (* Geoffrey Critzer, May 10 2013 *)
-
PARI
{a(n)=if(n==2, 1, 1-polcoeff(sum(k=2, n-1, a(k)*x^k/(1+(k-1)*x+x*O(x^n))^(k-1)), n))} /* Paul D. Hanna, Jan 17 2013 */
Formula
a(n) = 2*n^{n-3} (n>=2).
E.g.f.: (-W(-x)/x)*exp(-W(-x)). - Paul Barry, Nov 19 2010 [With offset 0, and W = LambertW. Equals (W(-x)/(-x))^2 = (exp(-W(-x)))^2 (see a comment above). - Wolfdieter Lang, Nov 11 2022]
G.f.: Sum_{n>=1} a(n+1) * x^n / (1 + n*x)^n = x/(1-x). - Paul D. Hanna, Jan 17 2013
Extensions
a(6) corrected and more terms from Sean A. Irvine, Dec 19 2017
After correction, this became identical (except for the offset) with A089104, contributed by N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004. The two entries have been merged using the older A-number. - N. J. A. Sloane, Dec 19 2017
Comments