cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A274303 A bisection of A007346.

Original entry on oeis.org

8, 24, 7680, 64, 3715891200, 194641920, 1428329123020800, 160, 1678343852714360832000, 637770664031457116160000, 4714400748520531002654720000, 2602349213183333113465405440000, 27064431817106664380040216576000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

A002671 a(n) = 4^n*(2*n+1)!.

Original entry on oeis.org

1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
Offset: 0

Views

Author

Keywords

Comments

From Sanjar Abrarov, Mar 30 2019: (Start)
There is a formula for numerical integration (see MATLAB Central file ID# 71037):
Integral_{x=0..1} f(x) dx = 2*Sum_{m=1..M} Sum_{n>=0} 1/((2*M)^(2*n + 1)*(2*n + 1)!)*f^(2*n)(x)|_x = (m - 1/2)/M, where the notation f^(2*n)(x)|_x = (m - 1/2)/M is the (2*n)-th derivative of the function f(x) at the points x = (m - 1/2)/M.
When we choose M = 1, then the corresponding coefficients are generated as 2*1/(2^(2*n + 1)*(2*n + 1)!) = 1/(4^n*(2*n + 1)!).
Therefore, this sequence also occurs in the denominator of the numerical integration formula at M = 1. (End)
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of 2*sinh(x/2) = x + x^3/24 + x^5/1920 + x^7/322560 + ....
If f(x) is a polynomial in x then the central difference f(x+1/2) - f(x-1/2) = 2*sinh(D/2)(f(x)) = D(f(x)) + (1/24)*D^3(f(x)) + (1/1920)*D^5(f(x)) + ..., where D denotes the differential operator d/dx. Formulas for higher central differences in terms of powers of the operator D can be obtained from the expansion of powers of the function 2*sinh(x/2). For example, the expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + .. leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + .... See A002674. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A bisection of A002866 and (apart from initial term) also a bisection of A007346.
Row sums of A225076. - Roger L. Bagula, Apr 27 2013

Programs

  • Mathematica
    a[n_] := 4^n*(2*n + 1)!; Array[a, 12, 0] (* Amiram Eldar, Apr 09 2022 *)
  • PARI
    a(n)=4^n*(2*n+1)!

Formula

a(n) = 16^n * Pochhammer(1,n) * Pochhammer(3/2,n). - Roger L. Bagula, Apr 26 2013
From Amiram Eldar, Apr 09 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*sinh(1/2).
Sum_{n>=0} (-1)^n/a(n) = 2*sin(1/2). (End)

Extensions

More terms from Michael Somos

A274299 A bisection of A002326.

Original entry on oeis.org

2, 3, 10, 4, 18, 11, 18, 5, 12, 12, 14, 23, 8, 20, 58, 6, 66, 35, 20, 39, 82, 28, 12, 36, 30, 51, 106, 36, 44, 24, 20, 7, 130, 36, 138, 60, 42, 15, 20, 52, 162, 83, 18, 60, 178, 60, 40, 95, 12, 99, 84, 66, 210, 28, 18, 37, 226, 30, 92, 119, 162, 36, 50, 8, 36, 131, 22, 135, 20, 30, 94, 60, 48, 116
Offset: 0

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MultiplicativeOrder[2, 4 n + 3], {n, 0, 73}] (* Stan Wagon, Jun 24 2016 *)

A274305 Order of shuffle group generated by in- and out-horseshoe shuffles of a deck of 2n cards.

Original entry on oeis.org

2, 12, 120, 32, 3628800, 95040, 87178291200, 80, 6402373705728000, 1216451004088320000, 1124000727777607680000, 310224200866619719680000, 403291461126605635584000000, 152444172305856930250752000000, 265252859812191058636308480000000, 192, 295232799039604140847618609643520000000
Offset: 1

Views

Author

N. J. A. Sloane, Jun 20 2016

Keywords

Crossrefs

Programs

  • Maple
    f:=proc(n) local k,i,np;
    if n=1 then 2
    elif n=2 then 12
    elif n=3 then 120
    elif n=6 then 12!/7!
    elif (n mod 2) = 1 then (2*n)!
    else
    np:=n; k:=1;
    for i while (np mod 2) = 0 do
       np:=np/2; k:=k+1; od;
       if (n=2^(k-1)) then (k+1)*2^k else (2*n)!/2; fi;
    fi;
    end;
    [seq(f(n),n=1..64)];
  • Mathematica
    a[n_] := Which[n == 1, 2, n == 2, 12, n == 3, 120, n == 6, 12!/7!, OddQ[n], (2 n)!, True, np = n; k = 1; While[EvenQ[np], np = np/2; k++]; If[n == 2^(k - 1), (k + 1)*2^k, (2n)!/2]];
    Array[a, 17] (* Jean-François Alcover, Nov 30 2017, from Maple *)

Formula

See Maple program.
Showing 1-4 of 4 results.