A007367 Numbers k such that phi(x) = k has exactly 3 solutions.
2, 44, 56, 92, 104, 116, 140, 164, 204, 212, 260, 296, 332, 344, 356, 380, 392, 444, 452, 476, 524, 536, 564, 584, 588, 620, 632, 684, 692, 716, 744, 764, 776, 836, 860, 884, 932, 956, 980, 1004, 1016, 1112, 1124, 1136, 1172, 1196, 1284, 1292, 1304
Offset: 1
Keywords
Examples
phi(69) = phi(92) = phi(138) = 44, so 44 is a term.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
- Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 44, p. 17, Ellipses, Paris, 2008.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- Wikipedia, Ford's theorem.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jul. 1992.
Crossrefs
Programs
-
Haskell
a007367 n = a007367_list !! (n-1) a007367_list = map fst $ filter ((== 3) . snd) $ zip a002202_list a058277_list -- Reinhard Zumkeller, Nov 25 2015
-
Mathematica
a = Table[ 0, {1500} ]; Do[ p = EulerPhi[ n ]; If[ p < 1501, a[ [ p ] ]++ ], {n, 1, 1500} ]; Select[ Range[ 1500 ], a[ [ # ] ] == 3 & ] Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==3&][[All,1]],50]//Sort (* Harvey P. Dale, Apr 02 2018 *)
-
PARI
is(k) = invphiNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp
Comments