cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007367 Numbers k such that phi(x) = k has exactly 3 solutions.

Original entry on oeis.org

2, 44, 56, 92, 104, 116, 140, 164, 204, 212, 260, 296, 332, 344, 356, 380, 392, 444, 452, 476, 524, 536, 564, 584, 588, 620, 632, 684, 692, 716, 744, 764, 776, 836, 860, 884, 932, 956, 980, 1004, 1016, 1112, 1124, 1136, 1172, 1196, 1284, 1292, 1304
Offset: 1

Views

Author

Keywords

Comments

From Torlach Rush, Jul 23 2018: (Start)
For known terms:
- The greatest common divisor of the three solutions is the distance of the middle solution from the least solution and is half the distance of the middle solution to the largest solution.
- If the number of distinct prime factors of k equals the number of solutions of k = phi(x), then the greatest common divisor of the solutions is the least solution divided by the number of solutions.
- Except for a(1), if the largest prime factor is the same for all solutions and is equal to the greatest common divisor of all solutions then the distance from a(n) to the least solution is gcd({k: phi(k) = a(n)}) + 2. (End)
By Ford's theorem on Euler totient function, this sequence is infinite. - Jianing Song, Jul 18 2018

Examples

			phi(69) = phi(92) = phi(138) = 44, so 44 is a term.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 44, p. 17, Ellipses, Paris, 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of solutions: A007617 (0), A007366 (2), this sequence (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Haskell
    a007367 n = a007367_list !! (n-1)
    a007367_list = map fst $
                   filter ((== 3) . snd) $ zip a002202_list a058277_list
    -- Reinhard Zumkeller, Nov 25 2015
    
  • Mathematica
    a = Table[ 0, {1500} ]; Do[ p = EulerPhi[ n ]; If[ p < 1501, a[ [ p ] ]++ ], {n, 1, 1500} ]; Select[ Range[ 1500 ], a[ [ # ] ] == 3 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==3&][[All,1]],50]//Sort (* Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(k) = invphiNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp