A007377 Numbers k such that the decimal expansion of 2^k contains no 0.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 39, 49, 51, 67, 72, 76, 77, 81, 86
Offset: 1
Examples
Here is 2^86, conjecturally the largest power of 2 not containing a 0: 77371252455336267181195264. - _N. J. A. Sloane_, Feb 10 2023
References
- J. S. Madachy, Mathematics on Vacation, Scribner's, NY, 1966, p. 126.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- W. Schneider, NoZeros: Powers n^k without Digit Zero [Cached copy]
- Eric Weisstein's World of Mathematics, Zero
- R. G. Wilson, V, Letter to N. J. A. Sloane, Oct. 1993
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a007377 n = a007377_list !! (n-1) a007377_list = elemIndices 0 a027870_list -- Reinhard Zumkeller, Apr 30 2013
-
Magma
[ n: n in [0..50000] | not 0 in Intseq(2^n) ]; // Bruno Berselli, Jun 08 2011
-
Maple
remove(t -> has(convert(2^t,base,10),0),[$0..1000]); # Robert Israel, Dec 29 2015
-
Mathematica
Do[ If[ Union[ RealDigits[ 2^n ] [[1]]] [[1]] != 0, Print[ n ] ], {n, 1, 60000}] Select[Range@1000, First@Union@IntegerDigits[2^# ] != 0 &] Select[Range[0,100],DigitCount[2^#,10,0]==0&] (* Harvey P. Dale, Feb 06 2015 *)
-
PARI
for(n=0,99,if(vecmin(eval(Vec(Str(2^n)))),print1(n", "))) \\ Charles R Greathouse IV, Jun 30 2011
-
Perl
use bignum; for(0..99) { if((1<<$_) =~ /^[1-9]+$/) { print "$_, " } } # Charles R Greathouse IV, Jun 30 2011
-
Python
def ok(n): return '0' not in str(2**n) print(list(filter(ok, range(10**4)))) # Michael S. Branicky, Aug 08 2021
Extensions
a(1) = 0 prepended by Reinhard Zumkeller, Apr 30 2013
Comments