cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A020665 a(n) is the (conjectured) maximal exponent k such that n^k does not contain a digit zero in its decimal expansion.

Original entry on oeis.org

86, 68, 43, 58, 44, 35, 27, 34, 0, 41, 26, 14, 34, 27, 19, 27, 17, 44, 0, 13, 22, 10, 13, 29, 15, 9, 16, 14, 0, 16, 7, 23, 5, 17, 22, 16, 10, 19, 0, 9, 13, 10, 6, 39, 7, 8, 19, 5, 0, 19, 18, 7, 13, 11, 23, 7, 23, 14, 0, 16, 5, 14, 12, 3, 14, 14, 14, 12, 0, 8, 22, 6, 4, 19, 11, 12, 10, 9, 0
Offset: 2

Views

Author

Keywords

Comments

Most of these values are not proved rigorously, but the search has been pushed very large (~ 10^9 or beyond for many n). See the OEIS wiki page for further reading. - M. F. Hasler, Mar 08 2014
From Bill McEachen, Apr 01 2015: (Start)
It appears that the values at square pointers will be no more than that of the base pointer. Specifically when the value at the base pointer is even, the value at the square will be 50%. For example, the sequence n=2,4,16 yields a(n)=86,43,19. The sequence n=3,9,81 yields a(n)=68,34,17.
Values at other than squares are less obvious. However, at some point, the run of the squares ends, implying remaining nonzero values should indicate either nonsquares or prime entries. (End)
Since (n^b)^j = n^(b*j), a(n) >= b*a(n^b); if a(n) is divisible by b then a(n^b) = a(n)/b. - Robert Israel, Apr 01 2015

Examples

			a(13) = 14 because 13^14 does not have a digit 0, but (it is conjectured that) for all k > 14, 13^k will have a digit 0. It is not excluded that there may be some k < a(n) for which n^k does have a digit 0, as is the case for 13^6. - _M. F. Hasler_, Mar 29 2015
		

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A011540, A052382, A027870, A102483, A103663.

Programs

  • Maple
    f:= proc(n)
      local p;
      if n mod 10 = 0 then return 0 fi;
      for p from 100 by -1 do
        if not has(convert(n^p,base,10),0) then return(p) fi
      od
    0
    end proc:
    seq(f(n),n=2..80); # Robert Israel, Apr 01 2015
  • Mathematica
    a = {}; Do[ If[ Mod[n, 10] == 0, b = 0; Continue]; Do[ If[ Count[ IntegerDigits[n^k], 0 ] == 0, b = k], {k, 1, 200} ]; a = Append[a, b], {n, 2, 81} ];
  • PARI
    Nmax(x,L=99,m=0)=for(n=1,L,vecmin(digits(x^n))&&m=n);m \\ L=99 is enough to reproduce the known results, since no value > 86 is known; M. F. Hasler, Mar 08 2014

Formula

a(10n) = 0 for any n>0. - M. F. Hasler, Dec 17 2014
a(100n+1) = 0 for any n>0. - Robert Israel, Apr 01 2015
a(80*n+65) <= 3, because for k >= 4, (80*n+65)^k == 625 (mod 10000). - Robert Israel, Apr 02 2015
From Chai Wah Wu, Jan 08 2020: (Start)
The following values and bounds are for the actual maximal exponents (not conjectured).
a(A052382(n)) > 0 for n > 1.
a(225) = 1
a(225^k) = 0 for k > 1.
a(625) = 1.
a(625^k) = 0 for k > 1.
a(3126) = 2.
a(3126^2) = 1.
a(3126^k) = 0 for k > 2.
a(9376) = 1.
a(9376^k) = 0 for k > 1.
a(21876) = 2.
a(21876^2) = 1.
a(21876^k) = 0 for k > 2.
a(34376) = 1.
a(34376^k) = 0 for k > 1.
a(400*n + 225) <= 1, since for k >= 2, (400*n + 225)^k == 625 (mod 10000), i.e., if 400*n + 225 is in A052382, then a(400*n+225) = 1, otherwise it is 0.
a(25000*n + 34376) <= 1, since for k >= 2, (25000*n + 34376)^k == 9376 (mod 100000), i.e., if 25000*n + 34376 is in A052382, then a(25000*n + 34376) = 1, otherwise it is 0.
a(25000*n + 21876) <= 2, since for k >= 3, (25000*n + 21876)^k == 9376 (mod 100000).
a(12500*n + 3126) <= 4, since for k >= 5, (12500*n + 3126)^k == 9376 (mod 100000).
(End)

A030700 Decimal expansion of 3^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68
Offset: 1

Views

Author

Keywords

Comments

See A007377 for the analog for 2^n (final term seems to be 86), A008839 for 5^n (final term seems to be 58), and others listed in cross-references. - M. F. Hasler, Mar 07 2014
See A238939(n) = 3^a(n) for the actual powers. - M. F. Hasler, Mar 08 2014

Examples

			Here is 3^68, conjecturally the largest power of 3 that does not contain a zero: 278128389443693511257285776231761. - _N. J. A. Sloane_, Feb 10 2023
		

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700 (this), A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

Extensions

Initial term 0 added by Vincenzo Librandi, Oct 19 2012

A027870 Number of zero digits in 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 1, 1, 1, 1, 1, 0, 1, 0, 2, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 1, 0, 1, 3, 3, 1, 0, 1, 1, 1, 0, 0, 2, 4, 2, 0, 2, 3, 1, 1, 0, 3, 5, 3, 3, 4, 2, 3, 4, 1, 1, 4, 5, 5, 6, 6, 7, 5, 5
Offset: 0

Views

Author

Keywords

Comments

I conjecture that any value x = 0, 1, 2, ... occurs only a finite number of times N(x) = 36, 41, 31, 34, 25, 32, 37, 23, 43, 47, 33, ... in this sequence, for the last time at well defined indices i(x) = 86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, ... - M. F. Hasler, Jul 09 2025

Examples

			2^31 = 2147483648 so a(31) = 0 and 2^42 = 4398046511104 so a(42) = 2.
		

Crossrefs

Cf. A000079 (powers of 2), A007377 (2^n has no zeros).
Similar for other digits: A065712 (1's), A065710 (2's), A065714 (3's), A065715 (4's), A065716 (5's), A065717 (6's), A065718 (7's), A065719 (8's), A065744 (9's).
Cf. A031146 (index of first appearance of n in this sequence), A094776 (index of last occurrence of digit n in powers of 2).
Cf. A305932 (table with n in row a(n)).

Programs

  • Haskell
    a027870 = a055641 . a000079  -- Reinhard Zumkeller, Apr 30 2013
    
  • Mathematica
    Table[ Count[ IntegerDigits[2^n], 0], {n, 0, 100} ]
    DigitCount[2^Range[0,110],10,0] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    A027870(n)=#select(d->!d,digits(2^n)) \\ M. F. Hasler, Jun 14 2018
    
  • Python
    def A027870(n):
        return str(2**n).count('0') # Chai Wah Wu, Feb 14 2020

Formula

a(n) = A055641(A000079(n)). - Reinhard Zumkeller, Apr 30 2013
a(A007377(n)) = 0; A224782(n) <= a(n). - Reinhard Zumkeller, Apr 30 2013

Extensions

Edited by M. F. Hasler, Jul 09 2025

A008839 Numbers k such that the decimal expansion of 5^k contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17, 18, 30, 33, 58
Offset: 1

Views

Author

Keywords

Comments

Probably 58 is last term.
Searched for k up to 10^10. - David Radcliffe, Dec 27 2015

Examples

			Here is 5^58, conjecturally the largest power of 5 that does not contain a 0:
34694469519536141888238489627838134765625. - _N. J. A. Sloane_, Feb 10 2023, corrected by _Patrick De Geest_, Jun 09 2024
		

Crossrefs

Cf. A000351 (5^n).
For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A305925, A052382, A027870, A102483, A103663.

Programs

  • Magma
    [ n: n in [0..500] | not 0 in Intseq(5^n) ]; // Vincenzo Librandi Oct 19 2012
    
  • Mathematica
    Do[ If[ Union[ RealDigits[ 5^n ][[1]]] [[1]] != 0, Print[ n ]], {n, 0, 25000}]
  • PARI
    for(n=0,99,vecmin(digits(5^n))&& print1(n",")) \\ M. F. Hasler, Mar 07 2014

Extensions

Definition corrected and initial term 0 added by M. F. Hasler, Sep 25 2011
Further edits by M. F. Hasler, Mar 08 2014
Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A007496 Numbers n such that the decimal expansions of 2^n and 5^n contain no 0's (probably 33 is last term).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 33
Offset: 1

Views

Author

Keywords

Comments

Intersection of A007377 and A008839. - Lekraj Beedassy, Jul 27 2004
From Jonathan Vos Post, Jul 20 2005: (Start)
Equivalently, numbers n such that 10^n is the product of two integers without any zero digits.
10^0 = 1 * 1
10^1 = 2 * 5
10^2 = 4 * 25
10^3 = 8 * 125
10^4 = 16 * 625
10^5 = 32 * 3125
10^6 = 64 * 15625
10^7 = 128 * 78125
10^9 = 512 * 1953125
10^18 = 262144 * 3814697265625
10^33 = 8589934592 * 116415321826934814453125. (End)
Searched for n up to 10^10. - David Radcliffe, Dec 27 2015

References

  • J. S. Madachy, Madachy's Mathematical Recreation, "#2. Number Toughies", pp. 126-8, Dover NY 1979.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. Oxford Univ. Press, 1966, p. 89.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    q:= n-> andmap(t-> not 0 in convert(t, base, 10), [2^n, 5^n]):
    select(q, [$0..40])[];  # Alois P. Heinz, Feb 03 2022
  • Mathematica
    Range@(10^5) // Select[Last@DigitCount@(5^#) == 0 &] // Select[Last@DigitCount@(2^#) == 0 &] (* Hans Rudolf Widmer, Feb 02 2022 *)
  • PARI
    isok(n) = vecmin(digits(2^n)) && vecmin(digits(5^n)); \\ Michel Marcus, Dec 28 2015

Extensions

Edited by N. J. A. Sloane, Oct 24 2009 at the suggestion of M. F. Hasler

A030701 Decimal expansion of 4^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 16, 17, 18, 36, 38, 43
Offset: 1

Views

Author

Keywords

Comments

Integers in A007377 / 2. Conjectured to be finite, and probably complete. - M. F. Hasler, Mar 08 2014

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(4^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Select[Range[0,50],DigitCount[4^#,10,0]==0&] (* Paolo Xausa, Oct 07 2023 *)
  • PARI
    for(n=0, 99, vecmin(digits(4^n))&& print1(n", ")) \\ M. F. Hasler, Mar 07 2014
    

Extensions

Offset corrected and initial 0 added by M. F. Hasler, Mar 07 2014

A030702 Decimal expansion of 6^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 24, 29, 44
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(6^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Select[Range[50],FreeQ[IntegerDigits[6^#],0]&] (* Harvey P. Dale, Feb 26 2017 *)
  • PARI
    for(n=0, 199, vecmin(digits(6^n))&& print1(n", ")) \\ M. F. Hasler, Mar 07 2014
    

Extensions

Offset corrected and initial 0 added by M. F. Hasler, Mar 07 2014

A030705 Numbers k such that the decimal expansion of 9^k contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34
Offset: 1

Views

Author

Keywords

Comments

Integers in A030700 / 2. - M. F. Hasler, Mar 07 2014
No more terms <= 10^5. - Georg Fischer, Mar 12 2020

Crossrefs

Cf. A007377 (analog for 2^n), A030700 (3), A030701 (4), A008839 (5), A030702 (6), A030703 and A195908 (7), A030704 (8), A030706 and A195946 (11), A195944 and A195945 (13); A195942, A195943.
This is row 0 of A305929.
Cf. A035064.

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(9^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Reap[For[n = 0, n < 100, n++, If[FreeQ[IntegerDigits[9^n], 0], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 04 2017 *)
  • PARI
    select( is(n)=vecmin(digits(9^n)), [0..39]) \\ M. F. Hasler, Mar 07 2014
    

Extensions

Offset changed to 1 and initial 0 added by M. F. Hasler, Mar 07 2014
Removed keyword "fini" (as in A035064) since it is only a conjecture that this sequence contains only finitely many terms. - Georg Fischer, Mar 12 2020

A030703 Decimal expansion of 7^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 11, 19, 35
Offset: 1

Views

Author

Keywords

Comments

No additional terms up to 20000. - Harvey P. Dale, Oct 02 2013

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(7^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Select[Range[0,100],DigitCount[7^#,10,0]==0&] (* Harvey P. Dale, Oct 02 2013 *)
  • PARI
    for( n=0, 9999, is_A052382(7^n) && print1(n, ", "))  \\ M. F. Hasler, Sep 25 2011
    

Formula

A030703 = A000420^(-1)(A052382) as a set, where f^(-1)(Y) = { x : f(x) in Y}.
A030703 = A000420^(-1) o A195908 as a function. - M. F. Hasler, Sep 25 2011

Extensions

Initial term 0 inserted by M. F. Hasler, Sep 25 2011

A030706 Decimal expansion of 11^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 41
Offset: 1

Views

Author

Keywords

Comments

See A195946 for the actual powers 11^n. - M. F. Hasler, Dec 17 2014
It appears that 41 is also the largest integer n such that 11^n is not pandigital, cf. A272269. - M. F. Hasler, May 18 2017

Crossrefs

For other zeroless powers x^n, see A238938, A238939, A238940, A195948, A238936, A195908 (x=7), A245852, A240945 (k=9), A195946 (x=11), A245853 (x=12), A195945 (x=13); A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706 (this), A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,41],DigitCount[11^#,10,0]==0&] (* Harvey P. Dale, Dec 31 2020 *)
  • PARI
    for(n=0,99,vecmin(digits(11^n))&&print1(n",")) \\ M. F. Hasler, Mar 08 2014

Extensions

Offset corrected and initial term 0 added by M. F. Hasler, Sep 25 2011
Further edits by M. F. Hasler, Dec 17 2014
Showing 1-10 of 57 results. Next