cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007378 a(n), for n >= 2, is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = 2n.

Original entry on oeis.org

3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103
Offset: 2

Views

Author

Keywords

Comments

This is the unique monotonic sequence {a(n)}, n>=2, satisfying a(a(n)) = 2n.
May also be defined by: a(n), n=2,3,4,..., is smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is an even number >= 4". - N. J. A. Sloane, Feb 23 2003
A monotone sequence satisfying a^(k+1)(n) = mn is unique if m=2, k >= 0 or if (k,m) = (1,3). See A088720. - Colin Mallows, Oct 16 2003
Numbers (greater than 2) whose binary representation starts with "11" or ends with "0". - Franklin T. Adams-Watters, Jan 17 2006
Lower density 2/3, upper density 3/4. - Charles R Greathouse IV, Dec 14 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003605. Equals A080653 + 2.
This sequence, A079905, A080637 and A080653 are all essentially the same.

Programs

  • Maple
    a := proc(n) option remember; if n < 4 then n+1 else a(iquo(n,2)) + a(iquo(n+1,2)) fi end:
    seq(a(n), n = 2..70); # Peter Bala, Aug 03 2022
  • Mathematica
    max = 70; f[x_] := -x/(1-x) + x/(1-x)^2*(2 + Sum[ x^(2^k + 2^(k+1)) - x^2^(k+1) , {k, 0, Ceiling[Log[2, max]]}]); Drop[ CoefficientList[ Series[f[x], {x, 0, max + 1}], x], 2](* Jean-François Alcover, May 16 2012, from g.f. *)
    a[2]=3; a[3]=4; a[n_?OddQ] := a[n] = a[(n-1)/2+1] + a[(n-1)/2]; a[n_?EvenQ] := a[n] = 2a[n/2]; Table[a[n], {n, 2, 71}] (* Jean-François Alcover, Jun 26 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = my(s=logint(n,2)-1); if(bittest(n,s), n<<1 - 2<Kevin Ryde, Aug 08 2022
  • Python
    from functools import cache
    @cache
    def a(n): return n+1 if n < 4 else a(n//2) + a((n+1)//2)
    print([a(n) for n in range(2, 72)]) # Michael S. Branicky, Aug 04 2022
    

Formula

a(2^i + j) = 3*2^(i-1) + j, 0<=j<2^(i-1); a(3*2^(i-1) + j) = 2^(i+1) + 2*j, 0<=j<2^(i-1).
a(3*2^k + j) = 4*2^k + 3j/2 + |j|/2, k>=0, -2^k <= j < 2^k. - N. J. A. Sloane, Feb 23 2003
a(2*n+1) = a(n+1)+a(n), a(2*n) = 2*a(n). a(n) = n+A060973(n). - Vladeta Jovovic, Mar 01 2003
G.f.: -x/(1-x) + x/(1-x)^2 * (2 + sum(k>=0, t^2(t-1), t=x^2^k)). - Ralf Stephan, Sep 12 2003

Extensions

More terms from Matthew Vandermast and Vladeta Jovovic, Mar 01 2003