cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007400 Continued fraction for Sum_{n>=0} 1/2^(2^n) = 0.8164215090218931...

Original entry on oeis.org

0, 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 6, 4, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, 6, 2, 4, 4, 6, 4, 2, 6, 4, 2, 4, 6, 4, 4, 2, 6, 4
Offset: 0

Views

Author

Keywords

Examples

			0.816421509021893143708079737... = 0 + 1/(1 + 1/(4 + 1/(2 + 1/(4 + ...))))
		

References

  • M. Kmošek, Rozwinieçie Niektórych Liczb Niewymiernych na Ulamki Lancuchowe (Continued Fraction Expansion of Some Irrational Numbers), Master's thesis, Uniwersytet Warszawski, 1979.

Crossrefs

Cf. A007404 (decimal), A073088 (partial sums), A073414/A073415 (convergents), A088431 (half), A089267, A092910.

Programs

  • Maple
    a:= proc(n) option remember; local n8, n16;
        n8:= n mod 8;
        if n8 = 0 or n8 = 3 then return 2
        elif n8 = 4 or n8 = 7 then return 4
        elif n8 = 1 then return procname((n+1)/2)
        elif n8 = 2 then return procname((n+2)/2)
        fi;
        n16:= n mod 16;
        if n16 = 5 or n16 = 14 then return 4
        elif n16 = 6 or n16 = 13 then return 6
        fi
    end proc:
    a(0):= 0: a(1):= 1: a(2):= 4:
    map(a, [$0..1000]); # Robert Israel, Jun 14 2016
  • Mathematica
    a[n_] := a[n] = Which[n < 3, {0, 1, 4}[[n+1]], Mod[n, 8] == 1, a[(n+1)/2], Mod[n, 8] == 2, a[(n+2)/2], True, {2, 0, 0, 2, 4, 4, 6, 4, 2, 0, 0, 2, 4, 6, 4, 4}[[Mod[n, 16]+1]]]; Table[a[n], {n, 0, 98}] (* Jean-François Alcover, Nov 29 2013, after Ralf Stephan *)
  • PARI
    a(n)=if(n<3,[0,1,4][n+1],if(n%8==1,a((n+1)/2),if(n%8==2,a((n+2)/2),[2,0,0,2,4,4,6,4,2,0,0,2,4,6,4,4][(n%16)+1]))) /* Ralf Stephan */
    
  • PARI
    a(n)=contfrac(suminf(n=0,1/2^(2^n)))[n+1]
    
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=suminf(n=0, 1/2^(2^n)); x=contfrac(x); for (n=1, 20001, write("b007400.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 07 2009
    
  • Scheme
    (define (A007400 n) (cond ((<= n 1) n) ((= 2 n) 4) (else (case (modulo n 8) ((0 3) 2) ((4 7) 4) ((1) (A007400 (/ (+ 1 n) 2))) ((2) (A007400 (/ (+ 2 n) 2))) (else (case (modulo n 16) ((5 14) 4) ((6 13) 6))))))) ;; (After Ralf Stephan's recurrence) - Antti Karttunen, Aug 12 2017

Formula

From Ralf Stephan, May 17 2005: (Start)
a(0)=0, a(1)=1, a(2)=4; for n > 2:
a(8k) = a(8k+3) = 2;
a(8k+4) = a(8k+7) = a(16k+5) = a(16k+14) = 4;
a(16k+6) = a(16k+13) = 6;
a(8k+1) = a(4k+1);
a(8k+2) = a(4k+2). (End)