cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007404 Decimal expansion of Sum_{n>=0} 1/2^(2^n).

Original entry on oeis.org

8, 1, 6, 4, 2, 1, 5, 0, 9, 0, 2, 1, 8, 9, 3, 1, 4, 3, 7, 0, 8, 0, 7, 9, 7, 3, 7, 5, 3, 0, 5, 2, 5, 2, 2, 1, 7, 0, 3, 3, 1, 1, 3, 7, 5, 9, 2, 0, 5, 5, 2, 8, 0, 4, 3, 4, 1, 2, 1, 0, 9, 0, 3, 8, 4, 3, 0, 5, 5, 6, 1, 4, 1, 9, 4, 5, 5, 5, 3, 0, 0, 0, 6, 0, 4, 8, 5, 3, 1, 3, 2, 4, 8, 3, 9, 7, 2, 6, 5, 6, 1, 7, 5, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Kempner shows that numbers of a general form (which includes this constant) are transcendental. - Charles R Greathouse IV, Nov 07 2017

Examples

			0.81642150902189314370....
		

References

  • M. J. Knight, An "oceans of zeros" proof that a certain non-Liouville number is transcendental, The American Mathematical Monthly, Vol. 98, No. 10 (1991), pp. 947-949.

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ Sum[1/2^(2^n), {n, 0, Infinity}], 110]] [[1]]
  • PARI
    default(realprecision, 20080); x=suminf(n=0, 1/2^(2^n)); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b007404.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009
    
  • PARI
    suminf(k = 0, 1/(2^(2^k))) \\ Michel Marcus, Mar 26 2017
    
  • PARI
    suminf(k=0,1.>>2^k) \\ Charles R Greathouse IV, Nov 07 2017

Formula

Equals -Sum_{k>=1} mu(2*k)/(2^k - 1) = Sum_{k>=1, k odd} mu(k)/(2^k - 1). - Amiram Eldar, Jun 22 2020

Extensions

Edited by Robert G. Wilson v, Dec 11 2002
Deleted old PARI program Harry J. Smith, May 20 2009