cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007412 The noncubes: a(n) = n + floor((n + floor(n^(1/3)))^(1/3)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

Seems to be numbers k for which the order of the torsion subgroup t of the elliptic curve y^2 = x^3 - k is t=1. - Artur Jasinski, Jun 30 2010
A010057(a(n)) = 0. - Reinhard Zumkeller, Oct 22 2011

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 27911
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000578 (complement), A000037 (nonsquares).

Programs

  • Haskell
    a007412 n = n + a048766 (n + a048766 n)  -- Reinhard Zumkeller, Oct 22 2011
    
  • Mathematica
    With[{upto=58},Complement[Range[upto],Range[Ceiling[Power[upto, (3)^-1]]]^3]] (* Harvey P. Dale, Nov 09 2011 *)
    A007412Q = ! IntegerQ[#~Surd~3] &; Select[Range[57], A007412Q] (* JungHwan Min, Mar 27 2017 *)
  • PARI
    lista(nn) = for (n=1, nn, if (! ispower(n, 3), print1(n, ", "))); \\ Michel Marcus, May 24 2015
    
  • PARI
    list(lim)=my(v=List(),s=sqrtnint(lim\=1,3),k3,k13=1); for(k=1,s, k3=k13; k13=(k+1)^3; for(n=k3+1,k13-1, listput(v,n))); for(n=s^3+1,lim, listput(v,n)); Vec(v) \\ Charles R Greathouse IV, Jun 13 2024
    
  • Python
    from sympy import integer_nthroot
    def A007412(n): return n+(k:=integer_nthroot(n,3)[0])+int(n>=(k+1)**3-k) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + A048766(n + A048766(n)). - Reinhard Zumkeller, Oct 22 2011
a(n) = n + n^(1/3) + O(1). - Charles R Greathouse IV, Aug 08 2024