cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007433 Inverse Moebius transform applied twice to squares.

Original entry on oeis.org

1, 6, 11, 27, 27, 66, 51, 112, 102, 162, 123, 297, 171, 306, 297, 453, 291, 612, 363, 729, 561, 738, 531, 1232, 678, 1026, 922, 1377, 843, 1782, 963, 1818, 1353, 1746, 1377, 2754, 1371, 2178, 1881, 3024, 1683
Offset: 1

Views

Author

Keywords

Comments

Dirichlet convolution of A001157 and A000012. Dirichlet convolution of A000005 and A000290 (Jovovic formula). - R. J. Mathar, Feb 03 2011
Sum of the squares of the divisors d1 from the ordered pairs of divisors of n, (d1,d2) with d1<=d2, such that d1|d2. - Wesley Ivan Hurt, Mar 22 2022

Examples

			G.f. = x + 6*x^2 + 11*x^3 + 27*x^4 + 27*x^5 + 66*x^6 + 51*x^7 + 112*x^8 + 102*x^9 + ... - _Michael Somos_, Jul 15 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A134577.

Programs

  • Mathematica
    a[n_] := Plus @@ DivisorSigma[2, Divisors[n]]; Array[a, 41] (* Robert G. Wilson v, May 05 2010 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # == 1, 1, (#^(2 #2 + 4) - (#2 + 2) #^2 + #2 + 1) / (#^2 - 1)^2] & @@@ FactorInteger @ n)]; (* Michael Somos, Jul 15 2018 *)
  • PARI
    /* Dirichlet convolution of A001157, A000012 (Mathar): */
    a(n)=sumdiv(n, d, sigma(d,2))
    
  • PARI
    /* Dirichlet convolution of A000005, A000290 (Mathar): */
    a(n)=sumdiv(n, d, d^2*sigma(n/d,0))

Formula

a(n) = Sum_{d|n} d^2*tau(n/d). - Vladeta Jovovic, Jul 31 2002
Equals A134577 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 02 2007
G.f.: Sum_{k>=1} sigma_2(k)*x^k/(1 - x^k), where sigma_2(k) is the sum of squares of divisors of k (A001157). - Ilya Gutkovskiy, Jan 16 2017
Dirichlet g.f.: zeta(s-2)*zeta(s)^2. - Benedict W. J. Irwin, Jul 14 2018
a(n) is multiplicative with a(p^e) = (p^(2*e + 4) - (e+2) * p^2 + e+1) / (p^2 - 1)^2. - Michael Somos, Jul 15 2018
Sum_{k=1..n} a(k) ~ Zeta(3)^2 * n^3 / 3. - Vaclav Kotesovec, Nov 04 2018

Extensions

a(38) corrected by Ilya Gutkovskiy, Jan 16 2016