A007438 Moebius transform of triangular numbers.
1, 2, 5, 7, 14, 13, 27, 26, 39, 38, 65, 50, 90, 75, 100, 100, 152, 111, 189, 148, 198, 185, 275, 196, 310, 258, 333, 294, 434, 292, 495, 392, 490, 440, 588, 438, 702, 549, 684, 584, 860, 582, 945, 730, 876, 803, 1127, 776, 1197, 910, 1168, 1020, 1430
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A000217.
Cf. A159905. - Gary W. Adamson, Apr 25 2009
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; add(mobius(n/d)*d*(d+1)/2, d=divisors(n)) end: seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2011
-
Mathematica
a[n_] := Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}]; Array[a, 60] (* Jean-François Alcover, Apr 17 2014 *)
-
PARI
a(n) = sumdiv(n, d, moebius(n/d)*d*(d+1)/2); \\ Michel Marcus, Nov 05 2018
Formula
a(n) = (A007434(n)+A000010(n))/2, half the sum of the Mobius transforms of n^2 and n. Dirichlet g.f. (zeta(s-2)+zeta(s-1))/(2*zeta(s)). - R. J. Mathar, Feb 09 2011
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/(1 - x)^3. - Ilya Gutkovskiy, Apr 25 2017
Comments