A077145
a(n) = floor(product of next n primes / product of next n composite numbers).
Original entry on oeis.org
0, 0, 0, 3, 17, 106, 590, 3090, 21092, 127889, 734604, 6252468, 32854824, 279387963, 1909105118, 12319099520, 95059552565, 740652053314, 4888570540807, 40743793439712, 307640708818550, 2379664631112651, 17269477509704034, 165628134793721883
Offset: 1
a(7)-a(9) from Donald Sampson (marsquo(AT)hotmail.com), Dec 08 2003
A113511
Product of first A000217(n) = n(n+1)/2 primes.
Original entry on oeis.org
1, 2, 30, 30030, 6469693230, 614889782588491410, 40729680599249024150621323470, 2566376117594999414479597815340071648394470, 225319534991831177328890236228992001350685163362356544091910
Offset: 0
a(4) = 2*(3*5)*(7*11*13)*(17*19*23*29) = 6469693230, the product of the first A000217(4) = 4*5/2 = 10 primes. 6469693230 = 2*15*1001*215441, where 2 is prime, 15 is 2-almost prime, 1001 is 3-almost prime and 215441 is 4-almost prime.
(Of course if the prime factors are rearranged, other primes and almost primes in the same pattern give this same product.)
-
nn=10;With[{prs=Prime[Range[(nn(nn+1))/2]]},Table[Times@@Take[prs,(n(n+1))/2], {n,0,nn}]] (* Harvey P. Dale, Sep 13 2011 *)
-
a(n)=my(v=primes(n*(n+1)/2));prod(i=1,#v,v[i]) \\ Charles R Greathouse IV, Jan 13 2012
A344482
Primes, each occurring twice, such that a(C(n)) = a(4*n-C(n)) = prime(n), where C is the Connell sequence (A001614).
Original entry on oeis.org
2, 3, 2, 5, 7, 3, 11, 5, 13, 17, 7, 19, 11, 23, 13, 29, 31, 17, 37, 19, 41, 23, 43, 29, 47, 53, 31, 59, 37, 61, 41, 67, 43, 71, 47, 73, 79, 53, 83, 59, 89, 61, 97, 67, 101, 71, 103, 73, 107, 109, 79, 113, 83, 127, 89, 131, 97, 137, 101, 139, 103, 149, 107, 151
Offset: 1
Written as an irregular triangle the sequence begins:
2;
3, 2, 5;
7, 3, 11, 5, 13;
17, 7, 19, 11, 23, 13, 29;
31, 17, 37, 19, 41, 23, 43, 29, 47;
53, 31, 59, 37, 61, 41, 67, 43, 71, 47, 73;
79, 53, 83, 59, 89, 61, 97, 67, 101, 71, 103, 73, 107;
...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
2
3 2 5
7 3 11 5 13
17 7 19 11 23 13 29
31 17 37 19 41 23 43 29 47
...
-
nterms=64;a=ConstantArray[0,nterms];For[n=1;p=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=Prime[p];If[(d=4p-n)<=nterms,a[[d]]=a[[n]]];p++]]; a
(* Second program, triangle rows *)
nrows=8;Table[rlen=2r-1;Permute[Prime[Range[s=1+(r-1)(r-2)/2,s+rlen-1]],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}]
Showing 1-3 of 3 results.
Comments