A007481 Number of subsequences of [ 1,...,n ] in which each even number has an odd neighbor.
1, 2, 3, 7, 11, 25, 39, 89, 139, 317, 495, 1129, 1763, 4021, 6279, 14321, 22363, 51005, 79647, 181657, 283667, 646981, 1010295, 2304257, 3598219, 8206733, 12815247, 29228713, 45642179, 104099605, 162557031, 370756241, 578955451, 1320467933
Offset: 0
Examples
For n=2, there are the following three subsequences of [1,2] with the desired property: empty, [1], [1,2]. For n=3, there are the following seven subsequences of [1,2,3] with the desired property: empty, [1], [3], [1,2], [2,3], [1,3], [1,2,3].
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..400
- R. K. Guy and W. O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly 34:2 (1996), pp. 152-155.
- Index entries for linear recurrences with constant coefficients, signature (0, 3, 0, 2).
Programs
-
Haskell
a007481 n = a007481_list !! n a007481_list = 1 : 2 : 3 : 7 : zipWith (+) (map (* 3) $ drop 2 a007481_list) (map (* 2) a007481_list) -- Reinhard Zumkeller, Oct 25 2015
-
Mathematica
LinearRecurrence[{0,3,0,2},{1,2,3,7},40] (* Harvey P. Dale, Feb 29 2012 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 2,0,3,0]^n*[1;2;3;7])[1,1] \\ Charles R Greathouse IV, Mar 02 2016
Formula
a(n) = 3*a(n-2) + 2*a(n-4).
G.f.: (x^3+2*x+1)/(-2*x^4-3*x^2+1). - Harvey P. Dale, Feb 29 2012
Extensions
More terms from James Sellers, Dec 24 1999
Comments