A055099
Expansion of g.f.: (1 + x)/(1 - 3*x - 2*x^2).
Original entry on oeis.org
1, 4, 14, 50, 178, 634, 2258, 8042, 28642, 102010, 363314, 1293962, 4608514, 16413466, 58457426, 208199210, 741512482, 2640935866, 9405832562, 33499369418, 119309773378, 424928058970, 1513403723666, 5390067288938, 19197009314146, 68371162520314, 243507506189234
Offset: 0
a(3) = 50 because among the 4^3 = 64 quaternary words of length 3 only 14 namely 003, 030, 031, 032, 033, 103, 130, 203, 230, 300, 301, 302, 303, 330 contain the subwords 03 or 30. - _Philippe Deléham_, Apr 27 2012
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.4.6).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Construction and composition of rooted trees via descent functions, Algebra, Volume 2013 (2013), Article ID 543913, 11 pages.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 17
- A. S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Sergey Kitaev and Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
- Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv:1504.04404 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,2).
-
a055099 n = a007481 (2 * n + 1) - a007481 (2 * n)
-- Reinhard Zumkeller, Oct 25 2015
-
I:=[1,4]; [n le 2 select I[n] else 3*Self(n-1) + 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 27 2021
-
a := proc(n) option remember; `if`(n < 2, [1, 4][n+1], (3*a(n-1) + 2*a(n-2))) end:
seq(a(n), n=0..23); # Peter Luschny, Jan 06 2019
-
max = 24; cv = ContinuedFraction[ Sqrt[2], max] // Convergents // Numerator; Series[ 1/(1 - cv.x^Range[max]), {x, 0, max}] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Jun 21 2013, after Gary W. Adamson *)
LinearRecurrence[{3, 2}, {1, 4}, 24] (* Jean-François Alcover, Sep 23 2017 *)
-
[(i*sqrt(2))^(n-1)*( i*sqrt(2)*chebyshev_U(n, -3*i/(2*sqrt(2))) + chebyshev_U(n-1, -3*i/(2*sqrt(2))) ) for n in (0..40)] # G. C. Greubel, Jun 27 2021
A007482
a(n) is the number of subsequences of [ 1, ..., 2n ] in which each odd number has an even neighbor.
Original entry on oeis.org
1, 3, 11, 39, 139, 495, 1763, 6279, 22363, 79647, 283667, 1010295, 3598219, 12815247, 45642179, 162557031, 578955451, 2061980415, 7343852147, 26155517271, 93154256107, 331773802863, 1181629920803, 4208437368135
Offset: 0
G.f. = 1 + 3*x + 11*x^2 + 39*x^3 + 139*x^4 + 495*x^5 + 1763*x^6 + ...
From _M. F. Hasler_, Jun 16 2019: (Start)
For n = 0, (1, ..., 2n) = () is the empty sequence, which is equal to its only subsequence, which satisfies the condition voidly, whence a(0) = 1.
For n = 1, (1, ..., 2n) = (1, 2); among the four subsequences {(), (1), (2), (1,2)} only (1) does not satisfy the condition, whence a(1) = 3.
For n = 2, (1, ..., 2n) = (1, 2, 3, 4); among the sixteen subsequences {(), ..., (1,2,3,4)}, the 5 subsequences (1), (3), (1,3), (2,3,4) and (1,2,3,4) do not satisfy the condition, whence a(2) = 16 - 5 = 11.
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 439.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 13, 29.
- Alexander Burstein and Opel Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, arXiv:2002.12189 [math.CO], 2020.
- R. K. Guy and William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996). Math. Rev. 97d:11017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 442
- Peter Karpov, InvMem, Item 26
- Peter Karpov, Illustration of initial terms (n = 1..8)
- Yuriy Sibirmovsky, A fractal with number of elements described by a(n)
- Index entries for linear recurrences with constant coefficients, signature (3,2).
Cf.
A000045,
A000129,
A001045,
A007455,
A007481,
A007483,
A007484,
A015518,
A201000 (prime subsequence),
A052913 (binomial transform),
A026597 (inverse binomial transform).
-
a007482 n = a007482_list !! (n-1)
a007482_list = 1 : 3 : zipWith (+)
(map (* 3) $ tail a007482_list) (map (* 2) a007482_list)
-- Reinhard Zumkeller, Oct 21 2015
-
I:=[1,3]; [n le 2 select I[n] else 3*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
a := n -> `if`(n=0, 1, 3^n*hypergeom([(1-n)/2,-n/2], [-n], -8/9)):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Jun 28 2017
-
a[n_]:=(MatrixPower[{{1,4},{1,2}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{3,2},{1,3},30] (* Harvey P. Dale, May 25 2013 *)
a[ n_] := Module[ {m = n + 1, s = 1}, If[ m < 0, {m, s} = -{m, (-2)^m}]; s SeriesCoefficient[ x / (1 - 3 x - 2 x^2), {x, 0, m}]]; (* Michael Somos, Jun 03 2015 *)
a[ n_] := With[{m = n + 1}, If[ m < 0, (-2)^m a[ -m], Expand[((3 + Sqrt[17])/2)^m - ((3 - Sqrt[17])/2)^m ] / Sqrt[17]]]; (* Michael Somos, Oct 13 2016 *)
-
a(n) := if n=0 then 1 elseif n=1 then 3 else 3*a(n-1)+2*a(n-2);
makelist(a(n),n,0,12); /* Emanuele Munarini, Jun 28 2017 */
-
{a(n) = 2*imag(( (3 + quadgen(68)) / 2)^(n+1))}; /* Michael Somos, Jun 03 2015 */
-
[lucas_number1(n,3,-2) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
A007484
a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=2, a(1)=7.
Original entry on oeis.org
2, 7, 25, 89, 317, 1129, 4021, 14321, 51005, 181657, 646981, 2304257, 8206733, 29228713, 104099605, 370756241, 1320467933, 4702916281, 16749684709, 59654886689, 212464029485, 756701861833, 2695033644469, 9598504657073, 34185581260157, 121753753094617, 433632421804165
Offset: 0
G.f. = 2 + 7*x + 25*x^2 + 89*x^3 + 317*x^4 + 1129*x^5 + ... - _Michael Somos_, Jul 19 2021
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
See
A008776 for definitions of Pisot sequences.
-
a007484 n = a007484_list !! n
a007484_list = 2 : 7 : zipWith (+)
(map (* 3) $ tail a007484_list) (map (* 2) a007484_list)
-- Reinhard Zumkeller, Nov 02 2015
-
A007484:=[2, 7]; [n le 2 select A007484[n] else 3*Self(n-1)+2*Self(n-2): n in [1..40]]; // Wesley Ivan Hurt, Jan 24 2017
-
A007484 := proc(n) option remember; if n=0 then 2; elif n=1 then 7; else 3*A007484(n-1)+2*A007484(n-2); fi; end;
-
LinearRecurrence[{3, 2}, {2, 7}, 40] (* Harvey P. Dale, Apr 24 2012 *)
Table[(2^-n ((3 - Sqrt[17])^n (-4 + Sqrt[17]) + (3 + Sqrt[17])^n (4 + Sqrt[17])))/Sqrt[17], {n, 0, 20}] // Expand (* Eric W. Weisstein, Jun 09 2019 *)
CoefficientList[Series[(2+x)/(1 -3x -2x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 09 2019 *)
a[ n_] := MatrixPower[{{1, 2}, {2, 2}}, n]//Flatten//Total; (* Michael Somos, Jul 19 2021 *)
-
a(n)=([0,1; 2,3]^n*[2;7])[1,1] \\ Charles R Greathouse IV, Mar 25 2016
-
A007484_vec(N)=Vec((2+x)/(1-3*x-2*x^2)+O(x^n)) \\ M. F. Hasler, Jul 12 2018
-
[(i*sqrt(2))^(n-1)*( i*2*sqrt(2)*chebyshev_U(n, -3*i/(2*sqrt(2))) + chebyshev_U(n-1, -3*i/(2*sqrt(2))) ) for n in (0..30)] # G. C. Greubel, Jul 18 2021
A007455
Number of subsequences of [ 1,...,n ] in which each odd number has an even neighbor.
Original entry on oeis.org
1, 1, 3, 5, 11, 17, 39, 61, 139, 217, 495, 773, 1763, 2753, 6279, 9805, 22363, 34921, 79647, 124373, 283667, 442961, 1010295, 1577629, 3598219, 5618809, 12815247, 20011685, 45642179, 71272673, 162557031, 253841389, 578955451, 904069513
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..400
- R. K. Guy, William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996).
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,2).
-
a007455_list = 1 : 1 : 3 : 5 : zipWith (+)
(map (* 2) a007455_list) (map (* 3) $ drop 2 a007455_list)
a007455 n = a007455_list !! n
-- Reinhard Zumkeller, Jul 16 2012
-
CoefficientList[Series[(-1-x-2 x^3)/(-1+3 x^2+2 x^4),{x,0,40}],x] (* Harvey P. Dale, Feb 18 2011 *)
LinearRecurrence[{0,3,0,2},{1,1,3,5},40] (* Harvey P. Dale, Feb 10 2015 *)
-
A007455(n)=[n%2*2+3,1]*([3,1;2,0]^(n\2-1))[,1] \\ M. F. Hasler, Jun 19 2019
Showing 1-4 of 4 results.
Comments