A007483 a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=1, a(1)=5.
1, 5, 17, 61, 217, 773, 2753, 9805, 34921, 124373, 442961, 1577629, 5618809, 20011685, 71272673, 253841389, 904069513, 3219891317, 11467812977, 40843221565, 145465290649, 518082315077, 1845177526529, 6571697209741, 23405446682281, 83359734466325, 296890096763537
Offset: 0
Examples
a(2) = 17 = (8, 4, 1) dot (1, 1, 5) = 8 + 4 + 5. - _Gary W. Adamson_, Aug 06 2016 From _Feryal Alayont_, Dec 08 2023: (Start) a(2) counts the edge covers of F(1,3) with a pendant attached at the vertex of degree 3. This is the graph: * -- * / | \ / | \ *---*---* An edge cover is a subset of the edges where each vertex is an endpoint of at least one edge. We show a one-to-one correspondence between subsequences of [1,...,5] and edge covers. Label edges connecting the top left vertex to the bottom vertices with odd numbers, 1, 3, 5, left to right. Label bottom edges with 2 (left) and 4 (right). An odd number in the subsequence means that edge is not in the edge cover. An even number means that edge is in. All bottom vertices are covered because if an odd edge is missing, an even edge covers the vertex attached to that odd. The pendant edge must be in every cover, so that edge covers both top vertices. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- A. Burstein, S. Kitaev, and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- R. K. Guy and William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996). Math. Rev. 97d:11017.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,2).
Programs
-
Haskell
a007483 n = a007483_list !! n a007483_list = 1 : 5 : zipWith (+) (map (* 3) $ tail a007483_list) (map (* 2) a007483_list) -- Reinhard Zumkeller, Nov 02 2015
-
Magma
[Floor((3/2+Sqrt(17)/2)^n*(1/2+7*Sqrt(17)/34)+(1/2-7*Sqrt(17)/34)*(3/2-Sqrt(17)/2)^n)+1: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011
-
Mathematica
LinearRecurrence[{3, 2}, {1, 5}, 24] (* Jean-François Alcover, Sep 26 2017 *) a[0]=1;a[1]=5;a[n_]:= a[n]= 3*a[n-1]+2*a[n-2];Table[a[n],{n,0,23}] (* James C. McMahon, Dec 17 2023 *)
-
PARI
a(n)=([1,2;2,2]^n*[1,2]~*[1,2])[1,1] \\ Charles R Greathouse IV, Jul 10 2011
-
Sage
@CachedFunction def a(n): return 5^n if (n<2) else 3*a(n-1) + 2*a(n-2) [a(n) for n in (0..40)] # G. C. Greubel, Jun 28 2021
Formula
G.f.: (1 + 2*x)/(1 - 3*x - 2*x^2).
a(n) = ((17 + 7*sqrt(17))/34)*((3 + sqrt(17))/2)^n* + ((17 - 7*sqrt(17))/34)*((3 - sqrt(17))/2)^n. - Paul Barry, Dec 08 2004
a(n-1) = Sum_{k=0..n} 2^(n-k)*A122542(n,k), n>=1. - Philippe Deléham, Oct 08 2006
a(n) = upper left term in the 2 X 2 matrix [1,2; 2,2]^(n+1). Also [a(n), a(n+1)] = the 2 X 2 matrix [0,1; 2,3]^(n+1) * [1,1]. Example: [0,1; 2,3]^4 * [1,1] = [61, 217]. - Gary W. Adamson, Mar 16 2008
Also, for n>=2, a(n)=[1,2;2,2]^(n-1)*[1,2]*[1,2]. - John M. Campbell, Jul 09 2011
a(n) = (i*sqrt(2))^(n-1)*( i*sqrt(2)*ChebyshevU(n, -3*i/(2*sqrt(2))) + 2*ChebyshevU(n-1, -3*i/(2*sqrt(2))) ). - G. C. Greubel, Jun 28 2021
E.g.f.: exp(3*x/2)*(17*cosh(sqrt(17)*x/2) + 7*sqrt(17)*sinh(sqrt(17)*x/2))/17. - Stefano Spezia, May 24 2024
Extensions
Definition simplified by N. J. A. Sloane, Aug 25 2014
Comments